skip to main content
research-article

Micro-rendering for scalable, parallel final gathering

Published:01 December 2009Publication History
Skip Abstract Section

Abstract

Recent approaches to global illumination for dynamic scenes achieve interactive frame rates by using coarse approximations to geometry, lighting, or both, which limits scene complexity and rendering quality. High-quality global illumination renderings of complex scenes are still limited to methods based on ray tracing. While conceptually simple, these techniques are computationally expensive. We present an efficient and scalable method to compute global illumination solutions at interactive rates for complex and dynamic scenes. Our method is based on parallel final gathering running entirely on the GPU. At each final gathering location we perform micro-rendering: we traverse and rasterize a hierarchical point-based scene representation into an importance-warped micro-buffer, which allows for BRDF importance sampling. The final reflected radiance is computed at each gathering location using the micro-buffers and is then stored in image-space. We can trade quality for speed by reducing the sampling rate of the gathering locations in conjunction with bilateral upsampling. We demonstrate the applicability of our method to interactive global illumination, the simulation of multiple indirect bounces, and to final gathering from photon maps.

References

  1. Bunnell, M. 2005. Dynamic ambient occlusion and indirect lighting. In GPU Gems 2, M. Pharr, Ed. Add. Wesley, 223--233.Google ScholarGoogle Scholar
  2. Cheslack-Postava, E., Wang, R., Akerlund, O., and Pellacini, F. 2008. Fast, realistic lighting and material design using nonlinear cut approximation. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 128:1--128:10. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Christensen, P. 2008. Point-based approximate color bleeding. Tech. Rep. 08-01, Pixar Animation Studios.Google ScholarGoogle Scholar
  4. Cohen, M., and Wallace, J. 1993. Radiosity and Realistic Image Synthesis. Academic Press Professional. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Dachsbacher, C., and Stamminger, M. 2005. Reflective shadow maps. In Proc. I3D, 203--213. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Dachsbacher, C., and Stamminger, M. 2006. Splatting indirect illumination. In Proc. I3D, 93--100. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Dachsbacher, C., Vogelgsang, C., and Stamminger, M. 2003. Sequential point trees. ACM Trans. Graph. (Proc. SIGGRAPH) 22, 3, 657--662. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Dachsbacher, C., Stamminger, M., Drettakis, G., and Durand, F. 2007. Implicit visibility and antiradiance for interactive global illumination. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination. AK Peters. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Hašan, M., Pellacini, F., and Bala, K. 2007. Matrix row-column sampling for the many-light problem. ACM Trans. Graph. (Proc. SIGGRAPH) 26, 3, 26. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Iwasaki, K., Dobashi, Y., Yoshimoto, F., and Nishita, T. 2007. Precomputed radiance transfer for dynamic scenes taking into account light interreflection. In Proc. EGSR, 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Jensen, H. W. 1995. Importance driven path tracing using the photon map. In Proc. ESGR, 326--335.Google ScholarGoogle ScholarCross RefCross Ref
  13. Jensen, H. W. 1996. Global illumination using photon maps. In Proc. EGSR, 21--30. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Keller, A. 1997. Instant radiosity. In SIGGRAPH '97, 49--56. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Křivánek, J., Gautron, P., Pattanaik, S., and Bouatouch, K. 2005. Radiance caching for efficient global illumination computation. IEEE TVCG 11, 5, 550--561. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Lehtinen, J., Zwicker, M., Turquin, E., Kontkanen, J., Durand, F., Sillion, F., and Aila, T. 2008. A meshless hierarchical representation for light transport. ACM Trans. Graph. (Proc. SIGGRAPH) 27, 3, 37:1--37:9. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Meyer, Q., Eisenacher, C., Stamminger, M., and Dachsbacher, C. 2009. Data-parallel hierarchical link creation for radiosity. In Proc. EGPGV, 65--70. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering: From Theory to Implementation. Morgan Kaufmann. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H., Peng, Q., and Guo, B. 2006. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 977--986. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Ritschel, T., Grosch, T., Kim, M. H., Seidel, H.-P., Dachsbacher, C., and Kautz, J. 2008. Imperfect shadow maps for efficient computation of indirect illumination. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 129:1--129:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Rusinkiewicz, S., and Levoy, M. 2000. QSplat: A multiresolution point rendering system for large meshes. In Proc. SIGGRAPH, 343--352. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Shevtsov, M., Soupikov, A., and Kapustin, A. 2007. Highly parallel fast kd-tree construction for interactive ray tracing of dynamic scenes. Computer Graphics Forum (Proc. Eurographics) 26, 3, 395--404.Google ScholarGoogle ScholarCross RefCross Ref
  23. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. Graph. (Proc. SIGGRAPH) 21, 3, 527--536. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Sloan, P.-P., Govindaraju, N., Nowrouzezahrai, D., and Snyder, J. 2007. Image-based proxy accumulation for real-time soft global illumination. In Proc. Pacific Graphics, 97--105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: A scalable approach to illumination. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 1098--1107. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Wang, R., Wang, R., Zhoun, K., Pan, M., and Bao, H. 2009. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph. (SIGGRAPH) 28, 3, 91:1--91:8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Ward, G., and Heckbert, P. 1992. Irradiance gradients. In Proc. EGSR, 85--98.Google ScholarGoogle Scholar
  28. Ward, G., Rubinstein, F., and Clear, R. 1988. A ray tracing solution for diffuse interreflection. In Computer Graphics (Proc. SIGGRAPH), vol. 22, 85--92. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Zhou, K., Hou, Q., Wang, R., and Guo, B. 2008. Real-time kd-tree construction on graphics hardware. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 27, 5, 126:1--126:11. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Micro-rendering for scalable, parallel final gathering

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader