skip to main content
research-article

Optimization-based interactive motion synthesis

Published:09 February 2009Publication History
Skip Abstract Section

Abstract

We present a physics-based approach to synthesizing motion of a virtual character in a dynamically varying environment. Our approach views the motion of a responsive virtual character as a sequence of solutions to the constrained optimization problem formulated at every time step. This framework allows the programmer to specify active control strategies using intuitive kinematic goals, significantly reducing the engineering effort entailed in active body control. Our optimization framework can incorporate changes in the character's surroundings through a synthetic visual sensory system and create significantly different motions in response to varying environmental stimuli. Our results show that our approach is general enough to encompass a wide variety of highly interactive motions.

Skip Supplemental Material Section

Supplemental Material

jain.mov

mov

90.4 MB

References

  1. Abe, Y., da Silva, M., and Popović, J. 2007. Multiobjective control with frictional contacts. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation, 249--258. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Abe, Y. and Popović, J. 2006. Interactive animation of dynamic manipulation. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Cohen, M. F. 1992. Interactive spacetime control for animation. In SIGGRAPH. Vol. 26, 293--302. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. da Silva, M., Abe, Y., and Popovic, J. 2008. Simulation of human motion data using short-horizon model-predictive control. Comput. Graphics Forum (EUROGRAPHICS) 27, 2, 371--380.Google ScholarGoogle ScholarCross RefCross Ref
  5. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. SIGGRAPH, 251--260. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Fang, A. C. and Pollard, N. S. 2003. Efficient synthesis of physically valid human motion. ACM Trans. Graphics, 417--426. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Gill, P., Saunders, M., and Murray, W. 1996. Snopt: An SQP algorithm for large-scale constrained optimization. Tech. rep. NA 96-2, University of California, San Diego.Google ScholarGoogle Scholar
  8. Hodgins, J. K., Wooten, W. L., Brogan, D. C., and O'Brien, J. F. 1995. Animating human athletics. SIGGRAPH, 71--78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Isaacs, P. M. and Cohen, M. F. 1987. Controlling dynamic simulation with kinematic constraints. SIGGRAPH, 215--224. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Kawato, M. 1999. Internal models for motor control and trajectory planning. In Current Opinions in Neurobiology, Vol. 9.Google ScholarGoogle ScholarCross RefCross Ref
  11. Kudoh, S., Komura, T., and Ikeuchi, K. 2006. Stepping motion for a human-like character to maintain balance against large perturbations. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2661--2666.Google ScholarGoogle Scholar
  12. Laszlo, J., van de Panne, M., and Fiume, E. 1996. Limit cycle control and its application to the animation of balancing and walking. SIGGRAPH, 155--162. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Liegeois, A. 1977. Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Trans. Syst. Man Cybernetics 7, 12, 868--871.Google ScholarGoogle ScholarCross RefCross Ref
  14. Liu, C. K. 2008. Synthesis of interactive hand manipulation. In Proceedings of the Eurographics/SIGGRAPH Symposium on Computer Animation. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Liu, C. K., Hertzmann, A., and Popović, Z. 2005. Learning physics-based motion style with nonlinear inverse optimization. ACM Trans. Graphics 24, 3, 1071--1081. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Liu, C. K. and Popović, Z. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graphics 21, 3, 408--416. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Liu, Z., Gortler, S. J., and Cohen, M. F. 1994. Hierarchical spacetime control. SIGGRAPH, 35--42. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Lockhart, D. B. and Ting, L. H. 2007. Optimal sensorimotor transformations for balance. Nat Neurosci 10, 1329--1336.Google ScholarGoogle ScholarCross RefCross Ref
  19. Maciejewski, A. A. and Klein, C. A. 1985. Obstacle avoidance for kinematically redundant manipulators in dynamically varying environments. Int. J. Robotics Res. 4, 3, 109--117.Google ScholarGoogle ScholarCross RefCross Ref
  20. Metoyer, R., Zordan, V., Hermens, B., Wu, C.-C., and Soriano, M. 2008. Psychologically inspired anticipation and dynamic response for impacts to the head and upper body. IEEE Trans. Visualization Comput. Graphics 14, 1, 173--185. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. NaturalMotion. 2006. Endorphin. www.naturalmotion.com.Google ScholarGoogle Scholar
  22. Popović, Z. and Witkin, A. 1999. Physically based motion transformation. SIGGRAPH, 11--20. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Raibert, M. H. 1986. Legged Robots That Balance. Massachusetts Institute of Technology, Cambridge, Massachusetts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Safonova, A., Hodgins, J. K., and Pollard, N. S. 2004. Synthesizing physically realistic human motion in low-dimensinal, behavior-specific spaces. ACM Trans. Graphics 23, 3, 514--521. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Sentis, L. and Khatib, O. 2005. Synthesis of whole-body behaviors through hierarchical control of behavioral primitives. Int. J. Humanoid Robotics 2, 4, 505--518.Google ScholarGoogle ScholarCross RefCross Ref
  26. Sentis, L. and Khatib, O. 2006. A whole-body control framework for humanoids operating in human environments. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). 2641--2648.Google ScholarGoogle Scholar
  27. Sharon, D. and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA).Google ScholarGoogle Scholar
  28. Stewart, A. J. and Cremer, J. F. 1992a. Animation of 3d human locomotion: Climbing stairs and descending stairs. In Proceedings of the Eurographics Workshop on Animation and Simulation, 152--168.Google ScholarGoogle Scholar
  29. Stewart, A. J. and Cremer, J. F. 1992b. Beyond keyframing: An algorithmic approach to animation. In Graphics Interface, 273--281. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Sulejmanpašić, A. and Popović, J. 2004. Adaptation of performed ballistic motion. ACM Trans. Graphics 24, 1. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Uno, Y., Kawato, M., and Suzuki, R. 1989. Minimum muscle-tension-change model which reproduces human arm movement. In Proceedings of the Symposium on Biological and Physiological Engineering, 299--302.Google ScholarGoogle Scholar
  32. van de Panne, M. and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Computer Animation and Simulation, 165--177.Google ScholarGoogle Scholar
  33. Witkin, A. and Kass, M. 1988. Spacetime constraints. SIGGRAPH. 22, 159--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. Wooten, W. L. 1998. Simulation of leaping, tumbling, landing, and balancing humans. Ph.D. thesis, Georgia Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. Yamane, K. and Nakamura, Y. 2000. Dynamics filter?Concept and implementation of on-line motion generator for human figures. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 688--695.Google ScholarGoogle Scholar
  36. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: simple biped locomotion control. ACM Trans. Graphics 26, 3, 105. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Zordan, V., Macchietto, A., Medin, J., Soriano, M., Wu, C.-C., Metoyer, R., and Rose, R. 2007. Anticipation from example. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (VRST'07). 81--84. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Zordan, V. B. and Hodgins, J. K. 1999. Tracking and modifying upper-body human motion data with dynamic simulation. In Conference on Computer Animation and Simulation.Google ScholarGoogle Scholar

Index Terms

  1. Optimization-based interactive motion synthesis

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 28, Issue 1
      January 2009
      144 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1477926
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 9 February 2009
      • Accepted: 1 December 2008
      • Revised: 1 October 2008
      • Received: 1 April 2008
      Published in tog Volume 28, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader