skip to main content
10.1145/1198555.1198664acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
Article

Discrete Willmore flow

Published:31 July 2005Publication History

ABSTRACT

The Willmore energy of a surface, ∫(H2 - K) dA, as a function of mean and Gaussian curvature, captures the deviation of a surface from (local) sphericity. As such this energy and its associated gradient flow play an important role in digital geometry processing, geometric modeling, and physical simulation. In this paper we consider a discrete Willmore energy and its flow. In contrast to traditional approaches it is not based on a finite element discretization, but rather on an ab initio discrete formulation which preserves the Möbius symmetries of the underlying continuous theory in the discrete setting. We derive the relevant gradient expressions including a linearization (approximation of the Hessian), which are required for non-linear numerical solvers. As examples we demonstrate the utility of our approach for surface restoration, n-sided hole filling, and non-shrinking surface smoothing.

References

  1. Balay, S., Buschelman, K., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Smith, B. F., and Zhang, H. 2004. PETSc Users Manual. Tech. Rep. ANL-95/11 - Revision 2.1.5, Mathematics and Computer Science Division, Argonne National Laboratory. Available at http://www-unix.mcs.anl.gov/petsc/petsc-2/.Google ScholarGoogle Scholar
  2. Benson, S. J., McInnes, L. C., Moré, J., and Sarich, J. 2004. TAO User Manual (Revision 1.7). Tech. Rep. ANL/MCS-TM-242, Mathematics and Computer Science Division, Argonne National Laboratory. Available at http://www-unix.mcs.anl.gov/tao.Google ScholarGoogle Scholar
  3. Blaschke, W. 1929. Vorlesungen über Differentialgeometrie III. Springer.Google ScholarGoogle Scholar
  4. Bobenko, A. I. 2005. A Conformal Energy for Simplicial Surfaces. In Combinatorial and Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl, Eds., MSRI Publications. Cambridge University Press, 133--143.Google ScholarGoogle Scholar
  5. Bridson, R., Marino, S., And Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer animation, Eurographics Association, 28--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Canham, P. B. 1970. The Minimum Energy of Bending as a Possible Explanation of the Biconcave Shape of the Human Red Blood Cell. Journal of Theoretical Biology 26, 61--81.Google ScholarGoogle ScholarCross RefCross Ref
  7. Chen, B.-Y. 1973. An Invariant of Conformal Mappings. Proceedings of the American Mathematical Society 40, 2, 563--564.Google ScholarGoogle ScholarCross RefCross Ref
  8. Chopp, D. L., And Sethian, J. A. 1999. Motion by Intrinsic Laplacian of Curvature. Interfaces and Free Boundaries 1, 1, 107--123.Google ScholarGoogle ScholarCross RefCross Ref
  9. Clarenz, U., Diewald, U., Dziuk, G., Rumpf, M., and Rusu, R. 2004. A Finite Element Method for Suface Restoration with Smooth Boundary Conditions. Computer Aided Geometric Design. To appear. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Deckelnick, K., Dzuik, G., and Elliott, C. M. 2003. Fully Discrete Semi-Implicit Second order Splitting for Anisotropic Surface Diffusion of Graphs. Tech. Rep. 33, University of Magdeburg.Google ScholarGoogle Scholar
  11. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow. In Computer Graphics (Proceedings of SIGGRAPH), 317--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic Parameterizations of Surface Meshes. Computer Graphics Forum (Proceedings of Eurographics 2002) 21, 3, 209--218.Google ScholarGoogle Scholar
  13. Droske, M., and Rumpf, M. 2004. A Level Set Formulation for Willmore Flow. Interfaces and Free Boundaries. To appear.Google ScholarGoogle Scholar
  14. Duchamp, T., Certain, A., DeRose, T., and Stuetzle, W. 1997. Hierarchical Computation of PL Harmonic Embeddings. Tech. rep., University of Washington.Google ScholarGoogle Scholar
  15. Eck, M., DeRose, T. D., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution Analysis of Arbitrary Meshes. In Proceedings of SIGGRAPH, 173--182. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Fenchel, W. 1929. Über die Krümmung und Windung geschlossener Raumkurven. Math. Ann. 101, 238--252.Google ScholarGoogle ScholarCross RefCross Ref
  17. Greiner, G. 1994. Variational Design and Fairing of Spline Surfaces. In Proceedings of EUROGRAPHICS, vol. 13, 143--154.Google ScholarGoogle ScholarCross RefCross Ref
  18. Grinspun, E., Krysl, P., and Schröder, P. 2002. CHARMS: A Simple Framework for Adaptive Simulation. ACM Transactions on Graphics 21, 3, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Grinspun, E., Hirani, A., Desbrun, M., and Schröder, P. 2003. Discrete Shells. In Symposium on Computer Animation, 62--67. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Gu, x., and Yau, S.-T. 2003. Global Conformal Surface Parameterization. In Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, 127--137. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Hari, L. P., Givoli, D., and Rubinstein, J. 2001. Computation of Open Willmore-Type Surfaces. Applied Numerical Mathematics 37, 257--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hauth, M., Etzmuss, O., and Strasser, W. 2003. Analysis of Numerical Methods for the Simulation of Deformable Models. The Visual Computer 19, 7-8, 581--600.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Helfrich, W. 1973. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Zeitschrift für Naturforschung Teil C 28, 693--703.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lott, N. J., and Pullin, D. I. 1988. Method for Fairing B-Spline Surfaces. Computer-Aided Design 20, 10, 597--600. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Mayer, U. F., And Simonett, G. 2000. Self-Intersections for the Surface Diffusion and the Volume Preserving Mean Curvature Flow. Differential and Integral Equations 13, 1189--1199.Google ScholarGoogle Scholar
  26. Mayer, U. F. 2001. Numerical Solution for the Surface Diffusion Flow in Three Space Dimensions. Computational and Applied Mathematics 20, 3, 361--379.Google ScholarGoogle Scholar
  27. Mercat, C. 2001. Discrete Riemann Surfaces and the Ising Model. Communications in Mathematical Physics 218, 1, 177--216.Google ScholarGoogle ScholarCross RefCross Ref
  28. Pinkall, U., and Polthier, K. 1993. Computing Discrete Minimal Surfaces and Their Conjugates. Experimental Mathematics 2, 1, 15--36.Google ScholarGoogle ScholarCross RefCross Ref
  29. Schneider, R., and Kobbelt, L. 2001. Geometric Fairing of Irregular Meshes for Free-From Surface Design. Computer Aided Geometric Design 18, 4, 359--379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Tasdizen, T., Whitaker, R., Burchard, P., and Osher, S. 2003. Geometric Surface Processing via Normal Maps. ACM Transactions on Graphics 22, 4, 1012--1033. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Welch, W., and Witkin, A. 1994. Free-Form Shape Design Using Triangulated Surfaces. Computer Graphics (Proceedings of SIGGRAPH) 28, 247--256. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. White, J. H. 1973. A Global Invariant of Conformal Mappings in Space. Proceedings of the American Mathematical Society 38, 1, 162--164.Google ScholarGoogle ScholarCross RefCross Ref
  33. Willmore, T. J. 2000. Surfaces in Conformal Geometry. Annals of Global Analysis and Geometry 18, 3-4, 255--264.Google ScholarGoogle ScholarCross RefCross Ref
  34. Xu, G., Pan, Q., and Bajaj, C. L. 2003. Discrete Surface Modeling using Geometric Flows. Tech. rep., University of Texas.Google ScholarGoogle Scholar
  35. Yoshizawa, S., and Belyaev, A. G. 2002. Fair Triangle Mesh Generation with Discrete Elastica. In Geometric Modeling and Processing, IEEE Computer Society, 119--123. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Discrete Willmore flow

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in
          • Published in

            cover image ACM Conferences
            SIGGRAPH '05: ACM SIGGRAPH 2005 Courses
            July 2005
            7157 pages
            ISBN:9781450378338
            DOI:10.1145/1198555

            Copyright © 2005 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 31 July 2005

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • Article

            Acceptance Rates

            Overall Acceptance Rate1,822of8,601submissions,21%

            Upcoming Conference

            SIGGRAPH '24

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader