skip to main content
article

Edge subdivision schemes and the construction of smooth vector fields

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

Vertex- and face-based subdivision schemes are now routinely used in geometric modeling and computational science, and their primal/dual relationships are well studied. In this paper, we interpret these schemes as defining bases for discrete differential 0- resp. 2-forms, and complete the picture by introducing edge-based subdivision schemes to construct the missing bases for discrete differential 1-forms. Such subdivision schemes map scalar coefficients on edges from the coarse to the refined mesh and are intrinsic to the surface. Our construction is based on treating vertex-, edge-, and face-based subdivision schemes as a joint triple and enforcing that subdivision commutes with the topological exterior derivative. We demonstrate our construction for the case of arbitrary topology triangle meshes. Using Loop's scheme for 0-forms and generalized half-box splines for 2-forms results in a unique generalized spline scheme for 1-forms, easily incorporated into standard subdivision surface codes. We also provide corresponding boundary stencils. Once a metric is supplied, the scalar 1-form coefficients define a smooth tangent vector field on the underlying subdivision surface. Design of tangent vector fields is made particularly easy with this machinery as we demonstrate.

Skip Supplemental Material Section

Supplemental Material

p1041-wang-high.mov

mov

28.9 MB

p1041-wang-low.mov

mov

11.7 MB

References

  1. Arnold, D. N., Falk, R. S., and Winther, R. 2006. Finite Element Exterior Calculus, Homological Techniques, and Applications. Acta Numerica 15.Google ScholarGoogle Scholar
  2. Biermann, H., Levin, A, and Zorin, D. 2000. Piecewise Smooth Subdivision Surfaces with Normal Control. Comp. Graphics (ACM/SIGGRAPH Proc.), 113--120. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bossavit, A 1998. Computational Electromagnetism. Academic Press, Boston.Google ScholarGoogle Scholar
  4. Catmull, E, and Clark, J. 1978. Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes. Comp. Aid Des. 10, 6, 350--355.Google ScholarGoogle ScholarCross RefCross Ref
  5. Desbrun, M., Kanso. E., and Tong, Y. 2005. Discrete Differential Forms for Computational Modeling. In Discrete Differential Geometry, E. Grinspun, P. Schröder, and M. Desbrun, Eds., Course Notes. ACM SIGGRAPH.Google ScholarGoogle Scholar
  6. Doo, D., and Sabin, M. 1978. Analysis of the Behaviour of Recursive Division Surfaces near Extraordinary Points. Comp. Aid. Des. 10, 6, 356--360.Google ScholarGoogle ScholarCross RefCross Ref
  7. Dyn, N., Gregory, J. A. and Levin, D. 1987. A 4-point Interpolatory Subdivision Scheme for Curve Design, Comput. Aided Geom. Des. 4, 4, 257--268.Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Elcott, S., Tong, Y, Kanso, E., Schröder P., and Desbrun, M. 2005. Stable, Circulation-Preserving, Simplicial Fluids. Submitted for Publication.Google ScholarGoogle Scholar
  9. Grinspun. E., Krysl, P. and Schröder P 2002, CHARMS: A Simple Framework for Adaptive Simulation. ACM Trans. on Graph. 21, 3, 281--290. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Halstead, M., Kass, M., and DeRose, T. 1993. Efficient, Fair Interpolation using Catmull-Clark Surfaces. Comp. Graphics (ACM/SIGGRAPH Proc.), 35--44. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Hiptmair, R. 2001. Higher-Order Whitney Forms. Progress in Electromagnetics Research 32, 271--299.Google ScholarGoogle ScholarCross RefCross Ref
  12. Khodakovsky, A, Schröder P, and Sweldens, W 2000. Progressive Geometry Compression. Comp. Graphics (ACM/SIGGRAPH Proc.), 271--278. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Kobbelt, L. 2000. √3 Subdivision. Comp. Graphics (ACM/SIGGRAPH Proc.), 103--112. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Litke, N., Levin, A, and Schröder P 2001. Fitting Subdivision Surfaces. In Visualization '01, 319--324. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Loop, C. 1987. Smooth Subdivision Surfaces Based on Triangles. Master's thesis, University of Utah, Department of Mathematics.Google ScholarGoogle Scholar
  16. Oswald, P, and Schröder, P. 2003. Composite Primal/Dual √3 Subdivision Schemes. Comput. Aided Geom. Des. 20, 5, 135--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Prautzsch, H., Boehm W. and Paluszny, M. 2002. Bézier and B-Spline Techniques. Springer. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Reif. U. 1995. A Unified Approach to Subdivision Algorithms Near Extraordinary Points. Comput. Aided Geom. Des. 12, 153--174. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Reif, U. 1999. Analyse und Konstruktion von Subdivisionsalgorithmen für Freiform-flächen beliebiger Topologie. Shaker Verlag. Habilitationsschrift.Google ScholarGoogle Scholar
  20. Reynolds, C. W. 1999. Steering Behaviors For Autonomous Characters. In Game Developers Conference.Google ScholarGoogle Scholar
  21. Schlick, C. 1994. An Inexpensive BRDF Model for Physically-Based Rendering. Comput. Graph. Forum 13, 3, 233--246.Google ScholarGoogle ScholarCross RefCross Ref
  22. Shi, L., and Yu, Y. 2005. Taming Liquids for Rapidly Changing Targets. In ACM/EG Symp. on Comp. Anim., 229--236. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Shiue, L.-J., Alliez. P, Ursu, R., and Kettner, L., 2005. A Tutorial on CGAL Polyhedron for Subdivision Algorithms.Google ScholarGoogle Scholar
  24. Stam, J. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values. Comp. Graphics (ACM/SIGGRAPH Proc.), 395--404. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Tong, Y, Lombeyda, S., Hirani, A. N., and Desbrun, M. 2003. Discrete Multiscale Vector Field Decomposition. ACM Trans. on Graph. 22, 3, 445--452. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Turk, G. 2001. Texture Synthesis on Surfaces. Comp. Graphics (ACM/SIGGRAPH Proc.), 347--354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Wang, K. 2006. Online Companion to "Edge Subdivision Schemes and the Con struction of Smooth Vector Fields". Tech. rep., Caltech. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Warren, J., and Weimer H. 2001. Subdivision Methods for Geometric Design: A Constructive Approach, first ed. Morgan Kaufman Publishers. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Whitney. H. 1957. Geometric Integration Theory. Princeton University Press.Google ScholarGoogle Scholar
  30. Zorin, D., and Kristjansson, D. 2002. Evaluation of Piecewise Smooth Subdivision Surfaces. Visual Computer 18, 5--6, 299--315.Google ScholarGoogle ScholarCross RefCross Ref
  31. Zorin, D., and Schröder P., Eds. 2000. Subdivision for Modeling and Animation. Course Notes. ACM SIGGRAPH.Google ScholarGoogle Scholar
  32. Zorin, D. 2000. A Method for Analysis of C1-Continuity of Subdivision Surfaces. SIAM J. Numer. Anal. 37, 5, 1677--1708. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Zorin, D. 2000. Smoothness of Subdivision on Irregular Meshes. Constructive Approximation 16, 3, 359--397.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Edge subdivision schemes and the construction of smooth vector fields

          Recommendations

          Comments

          Login options

          Check if you have access through your login credentials or your institution to get full access on this article.

          Sign in

          Full Access

          • Published in

            cover image ACM Transactions on Graphics
            ACM Transactions on Graphics  Volume 25, Issue 3
            July 2006
            742 pages
            ISSN:0730-0301
            EISSN:1557-7368
            DOI:10.1145/1141911
            Issue’s Table of Contents

            Copyright © 2006 ACM

            Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

            Publisher

            Association for Computing Machinery

            New York, NY, United States

            Publication History

            • Published: 1 July 2006
            Published in tog Volume 25, Issue 3

            Permissions

            Request permissions about this article.

            Request Permissions

            Check for updates

            Qualifiers

            • article

          PDF Format

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader