skip to main content
article

ASAP3: a batch means procedure for steady-state simulation analysis

Published:01 January 2005Publication History
Skip Abstract Section

Abstract

We introduce ASAP3, a refinement of the batch means algorithms ASAP and ASAP2, that delivers point and confidence-interval estimators for the expected response of a steady-state simulation. ASAP3 is a sequential procedure designed to produce a confidence-interval estimator that satisfies user-specified requirements on absolute or relative precision as well as coverage probability. ASAP3 operates as follows: the batch size is progressively increased until the batch means pass the Shapiro-Wilk test for multivariate normality; and then ASAP3 fits a first-order autoregressive (AR(1)) time series model to the batch means. If necessary, the batch size is further increased until the autoregressive parameter in the AR(1) model does not significantly exceed 0.8. Next, ASAP3 computes the terms of an inverse Cornish-Fisher expansion for the classical batch means t-ratio based on the AR(1) parameter estimates; and finally ASAP3 delivers a correlation-adjusted confidence interval based on this expansion. Regarding not only conformance to the precision and coverage-probability requirements but also the mean and variance of the half-length of the delivered confidence interval, ASAP3 compared favorably to other batch means procedures (namely, ABATCH, ASAP, ASAP2, and LBATCH) in an extensive experimental performance evaluation.

References

  1. Alexopoulos, C. and Goldsman, D. 2004. To batch or not to batch? ACM Trans. Model. Comput. Simul. 14, 1 (Jan.), 76--114. Google ScholarGoogle Scholar
  2. Alexopoulos, C. and Seila, A. F. 1998. Output data analysis. In Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice}, J. Banks, Ed. John Wiley & Sons, New York, NY, 225--272.Google ScholarGoogle Scholar
  3. Amemiya, T. and Wu, R. Y. 1972. The effect of aggregation on prediction in the autoregressive model. J. Amer. Statist. Assoc. 67, 339 (Sept.), 628--632.Google ScholarGoogle Scholar
  4. Bickel, P. J. and Doksum, K. A. 1977. Mathematical Statistics: Basic Ideas and Selected Topics. Holden-Day, San Francisco, CA.Google ScholarGoogle Scholar
  5. Box, G. E. P. 1954. Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. Ann. Math. Stat. 25, 290--302.Google ScholarGoogle Scholar
  6. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. 1994. Time Series Analysis: Forecasting and Control. 3rd Ed. Prentice Hall, Englewood Cliffs, NJ. Google ScholarGoogle Scholar
  7. Chow, Y. S. and Robbins, H. 1965. On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36, 457--462.Google ScholarGoogle Scholar
  8. Fishman, G. S. 1996. Monte Carlo: Concepts, Algorithms, and Applications. Springer-Verlag, New York, NY.Google ScholarGoogle Scholar
  9. Fishman, G. S. 1998. LABATCH.2 for analyzing sample path data {online}. Department of Operations Research, University of North Carolina, Chapel Hill, NC. Available at <http://www.unc.edu/depts/or/downloads/tech_reports/fishman/uncor97-04.ps>.Google ScholarGoogle Scholar
  10. Fishman, G. S. and Yarberry, L. S. 1997. An implementation of the batch means method. INFORMS J. Comput. 9, 3, 296--310.Google ScholarGoogle Scholar
  11. Forsythe, G. E., Malcolm, M. A., and Moler, C. B. 1977. Computer Methods for Mathematical Computations. Prentice-Hall, Englewood Cliffs, NJ. Google ScholarGoogle Scholar
  12. Fox, B. L., Goldsman, D., and Swain, J. J. 1991. Spaced batch means. Oper. Res. Lett. 10, 5 (July), 255--263.Google ScholarGoogle Scholar
  13. Fuller, W. A. 1996. Introduction to Statistical Time Series. 2nd Ed. John Wiley & Sons, New York, NY.Google ScholarGoogle Scholar
  14. Jenkins, G. M. 1954. An angular transformation of the serial correlation coefficient. Biometrika 41, 1/2, 261--265.Google ScholarGoogle Scholar
  15. Johnson, N. L., Kotz, S., and Balakrishnan, N. 1994. Continuous Univariate Distributions, Vol. 1. 2nd Ed. John Wiley & Sons, New York, NY.Google ScholarGoogle Scholar
  16. Kang, K. and Schmeiser, B. W. 1987. Properties of batch means from stationary ARMA time series. Oper. Res. Lett. 6, 1 (March), 19--24.Google ScholarGoogle Scholar
  17. Lada, E. K., Wilson, J. R., and Steiger, N. M. 2003. A wavelet-based spectral method for steady-state simulation analysis. In Proceedings of the 2003 Winter Simulation Conference, S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 422--430. Available at <http://www.informs-cs.org/wsc03papers/052.pdf>. Google ScholarGoogle Scholar
  18. Lada, E. K., Wilson, J. R., Steiger, N. M., and Joines, J. A. 2004a. Performance evaluation of a wavelet-based spectral method for steady-state simulation analysis. In Proceedings of the 2004 Winter Simulation Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 694--702. Available at <www.informs-sim.org/wsc04papers/084.pdf>. Google ScholarGoogle Scholar
  19. Lada, E. K., Wilson, J. R., Steiger, N. M., and Joines, J. A. 2004b. Performance of a wavelet-based spectral procedure for steady-state simulation analysis. INFORMS J. Comput. to appear. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/lada04joc.pdf>. Google ScholarGoogle Scholar
  20. Malkovich, J. F. and Afifi, A. A. 1973. On tests for multivariate normality. J. Amer. Statist. Assoc. 68, 341 (March), 176--179.Google ScholarGoogle Scholar
  21. Nádas, A. 1969. An extension of a theorem of Chow and Robbins on sequential confidence intervals for the mean. The Ann. Math. Stat. 40, 2, 667--671.Google ScholarGoogle Scholar
  22. Royston, J. P. 1982a. An extension of Shapiro and Wilk's W test for normality to large samples. Appl. Stat. 31, 2, 115--124.Google ScholarGoogle Scholar
  23. Royston, J. P. 1982b. Algorithm AS 181. The W test for normality. Appl. Stat. 31, 176--180.Google ScholarGoogle Scholar
  24. Satterthwaite, F. E. 1941. Synthesis of variance. Psychometrika 6, 5, 309--316.Google ScholarGoogle Scholar
  25. Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. Biometrics Bull. 2, 6, 110--114.Google ScholarGoogle Scholar
  26. Searle, S. R. 1982. Matrix Algebra Useful for Statistics. John Wiley & Sons, New York, NY.Google ScholarGoogle Scholar
  27. Steiger, N. M. 1999. Improved batching for confidence interval construction in steady state simulation. PhD thesis, Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <http://www.lib.ncsu.edu/etd/public/etd-19231992992670/etd.pdf>.Google ScholarGoogle Scholar
  28. Steiger, N. M. and Wilson, J. R. 1999. Improved batching for confidence interval construction in steady-state simulation. In Proceedings of the 1999 Winter Simulation Conference, P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 442--451. Available at <http://www.informs-cs.org/wsc99papers/061.PDF>. Google ScholarGoogle Scholar
  29. Steiger, N. M. and Wilson, J. R. 2000. Experimental performance evaluation of batch-means procedures for simulation output analysis. In Proceedings of the 2000 Winter Simulation Conference, R. R. Barton, J. A. Joines, K. Kang, and P. A. Fishwick, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 627--636. Available at <http://www.informs-cs.org/wsc00papers/084.PDF>. Google ScholarGoogle Scholar
  30. Steiger, N. M. and Wilson, J. R. 2001. Convergence properties of the batch means method for simulation output analysis. INFORMS J. Comput. 13, 4, 277--293. Google ScholarGoogle Scholar
  31. Steiger, N. M. and Wilson, J. R. 2002a. An improved batch means procedure for simulation output analysis. Manage. Sci. 48 12, 1569--1586. Google ScholarGoogle Scholar
  32. Steiger, N. M. and Wilson, J. R. 2002b. ASAP software and user's manual. Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/installasap.exe>.Google ScholarGoogle Scholar
  33. Steiger, N. M., Lada, E. K., Wilson, J. R., Alexopoulos, C., Goldsman, D., and Zouaoui, F. 2002. ASAP2: An improved batch means procedure for simulation output analysis. In Proceedings of the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 336--344. Available at <http://www.informs-cs.org/wsc02papers/043.pdf>. Google ScholarGoogle Scholar
  34. Steiger, N. M., Lada, E. K., Wilson, J. R., Joines, J. A., Alexopoulos, C., and Goldsman, D. 2003. ASAP3 software and user's manual. Department of Industrial Engineering, North Carolina State University, Raleigh, NC. Available at <ftp.ncsu.edu/pub/eos/pub/jwilson/installasap3.exe>.Google ScholarGoogle Scholar
  35. Steiger, N. M., Lada, E. K., Wilson, J. R., Joines, J. A., Alexopoulos, C., and Goldsman, D. 2004. Steady-state simulation analysis using ASAP3. In Proceedings of the 2004 Winter Simulation Conference, R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ. 672--680. Available at <www.informs-sim.org/wsc04papers/081.pdf>. Google ScholarGoogle Scholar
  36. Stuart, A. and Ord, J. K. 1994. Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory. 6th. Ed. Edward Arnold, London.Google ScholarGoogle Scholar
  37. Suárez-González, A., López-Ardao, J. C., López-García, C., Rodríguez-Pérez, M., Fernández-Veiga, M., and Sousa-Vieira, M. E. 2002. A batch means procedure for mean value estimation of processes exhibiting long range dependence. In Proceedings of the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, Eds. Institute of Electrical and Electronics Engineers, Piscataway, NJ, 456--464. Available at <http://www.informs-cs.org/wsc02papers/057.pdf>. Google ScholarGoogle Scholar
  38. Tew, J. D. and Wilson, J. R. 1992. Validation of simulation analysis methods for the Schruben-Margolin correlation-induction strategy. Oper. Res. 40, 1, 87--103. Google ScholarGoogle Scholar
  39. Welch, B. L. 1956. On linear combinations of several variances. J. Amer. Stat. Assoc. 51 273, 132--148.Google ScholarGoogle Scholar
  40. Welch, P. D. 1983. The statistical analysis of simulation results. In Computer Performance Modeling Handbook, S. S. Lavenberg, Ed. Academic Press, New York NY, 268--329.Google ScholarGoogle Scholar

Index Terms

  1. ASAP3: a batch means procedure for steady-state simulation analysis

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader