skip to main content
article

Quantum-noise: protected data encryption for WDM fiber-optic networks

Published:15 October 2004Publication History
Skip Abstract Section

Abstract

We demonstrate high data-rate quantum-noise{protected data encryption through optical fibers using coherent states of light. Specifically, we demonstrate 650Mbps data encryption through a 10Gbps data-bearing, in-line amplified 200km-long line. In our protocol, legitimate users (who share a short secret-key) communicate using an M-ry signal set while an attacker (who does not share the secret-key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria of the cryptographic objective of key generation (quantum key generation), the performance criteria of data encryption are established and carefully considered.

References

  1. G. S. Vernam. Cipher printing telegraph systems for secret wire and radio telegraphic communications. J. Am. I. Electrical En., 45:109, 1926.Google ScholarGoogle Scholar
  2. B. Schneier. Applied Cryptography, 2nd Edition. John Wiley and Sons, Inc., New York, 1996. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. J. Daemen and V. Rijmen. The block cipher Rijndael. In J. J. Quisquater and B. Schneier, editors, Smart Card Research and Applications, LNCS 1820, pages 288--296. Springer-Verlag, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing. In Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, pages 175--179, 1984.Google ScholarGoogle Scholar
  5. A. K. Ekert. Quantum cryptography based on Bell's theorem. Physics Review Letters, 67, 1991.Google ScholarGoogle Scholar
  6. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Reviews of Modern Physics, 74:145--195, 2002.Google ScholarGoogle ScholarCross RefCross Ref
  7. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin. Quantum cryptography using entangled photons in energy-time Bell states. Physics Review Letters, 84, 2000.Google ScholarGoogle Scholar
  8. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger. Quantum cryptography with entangled photons. Physics Review Letters, 84, 2000.Google ScholarGoogle Scholar
  9. H. P. Yuen. KCQ: A new approach to quantum cryptography I. General principles and qumode key generation. quant-ph/0311061, 2004.Google ScholarGoogle Scholar
  10. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen. Secure communication using mesoscopic coherent states. Physics Review Letters, 90:227901, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  11. E. Corndorf, G. Barbosa, C. Liang, H. P. Yuen, and P. Kumar. High-speed data encryption over 25km of fiber by two-mode coherent-state quantum cryptography. Optics Letters, 28:2040--2042, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  12. E. Corndorf, G. S. Kanter, C. Liang, and P. Kumar. Quantum-noise protected data encryption for wdm networks. In 2004 Conference on Lasers Electro Optics (CLEO'04) post-deadline, San Francisco, CA, 2004.Google ScholarGoogle Scholar
  13. E. Corndorf, G. S. Kanter, C. Liang, and P. Kumar. Data encryption over an inline-amplified 200km-long WDM line using coherent-state quantum cryptography. In Proceedings of the SPIE Defense and Security Symposium, Orlando, FL, April 2004.Google ScholarGoogle Scholar
  14. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and Sons, Inc., New York, 1991. Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379--423 and 623--656, 1948.Google ScholarGoogle ScholarCross RefCross Ref
  16. C. E. Shannon. Communication theory of secrecy systems. Bell System Technical Journal, 28:656--715, 1949.Google ScholarGoogle ScholarCross RefCross Ref
  17. J. L. Massey. An introduction to contemporary cryptology. Proceedings of the IEEE, 76(5):533--549, 1988.Google ScholarGoogle ScholarCross RefCross Ref
  18. T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, and H. Imai. How much security does Y-00 protocol provide us? Physics Letters A, 327:28--32, 2004.Google ScholarGoogle ScholarCross RefCross Ref
  19. P. Kumar H. P. Yuen and E. Corndorf. Security of Y-00 and similar quantum cryptographic protocols. quant-ph/0407067, submitted to Phy. Lett. A, 2004.Google ScholarGoogle Scholar
  20. G. A. Barbosa. Fast and secure key distribution using mesoscopic coherent states of light. Physics Review A, 68:052307, 2003.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Quantum-noise: protected data encryption for WDM fiber-optic networks

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in

        Full Access

        • Published in

          cover image ACM SIGCOMM Computer Communication Review
          ACM SIGCOMM Computer Communication Review  Volume 34, Issue 5
          October 2004
          104 pages
          ISSN:0146-4833
          DOI:10.1145/1039111
          Issue’s Table of Contents

          Copyright © 2004 Authors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 15 October 2004

          Check for updates

          Qualifiers

          • article

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader