Skip to main content
Log in

Tidal friction in satellites and planets. The new version of the creep tide theory

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Paper on the creep tide theory and its applications to satellites and planets with emphasis on a new set of differential equations allowing easier numerical studies. The creep tide theory is a new paradigm that does not fix a priori the tidal deformation of the body, but considers the deformation as a low-Reynolds-number flow. The evolution under tidal forces is ruled by an approximate solution of the Navier–Stokes equation depending on the body’s viscosity with no ad hoc assumptions on its shape and orientation. It reproduces closely the results of Darwinian theories in the case of gaseous planets and stars, but the results are completely different in the case of stiff satellites and planets. It explains the tidal dissipations of Enceladus and Mimas. The extension of the theory to nonhomogeneous icy satellites with a subsurface ocean allows the amplitude of the forced oscillations around synchronization (librations) to be better determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Ferraz-Mello, EPSC Abstracts 7, EPSC2012-284 (2012).

  2. S. Ferraz-Mello, Dissipation and synchronization due to creeping tides, in American Astronomical Society, DDA Meeting No. 43, id.8.0 6 (2012).

  3. S. Ferraz-Mello, Celest. Mech. Dyn. Astr. 116, 109 (2013).

    Article  ADS  Google Scholar 

  4. M.E. Alexander, Astrophys. Sp. Sci. 23, 459 (1973).

    Article  ADS  Google Scholar 

  5. M. Efroimsky, J.G. Williams, Celest. Mech. Dyn. Astron. 104, 257 (2009).

    Article  ADS  Google Scholar 

  6. M. Efroimsky, V. Lainey, J. Geophys. Res. 112, E12003 (2007).

    Article  ADS  Google Scholar 

  7. V.V. Makarov, M. Efroimsky, Astrophys. J. 764, 27 (2013).

    Article  ADS  Google Scholar 

  8. B. Noyelles, J. Frouard, V. Makarov, M. Efroimsky, Icarus 241, 26 (2014).

    Article  ADS  Google Scholar 

  9. M. Efroimsky, Astrophys. J. 746, 150 (2012).

    Article  ADS  Google Scholar 

  10. M. Efroimsky, Celest. Mech. Dyn. Astr. 112, 283 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Efroimsky, Astron. J. 150, 98 (2015).

    Article  ADS  Google Scholar 

  12. S. Ferraz-Mello, A. Rodrguez, H. Hussmann, Celest. Mech. Dyn. Astr. 101, 171 (2008) [Errata: Celest. Mech. Dyn. Astr. 104, 319 (2009)].

    Article  ADS  Google Scholar 

  13. H.A. Folonier, S. Ferraz-Mello, E. Andrade-Ines, Celest. Mech. Dyn. Astr. 130, 78 (2018).

    Article  ADS  Google Scholar 

  14. S. Ferraz-Mello, Celest. Mech. Dyn. Astr. 122 (2015) 359 [Errata: Celest. Mech. Dyn. Astr. 130, 78 (2018), p. 20].

    Article  ADS  Google Scholar 

  15. G. Arfken, H.J. Weber, Mathematical Methods for Physicists, 6th ed. (Elsevier, Burlington, MA, 2005).

  16. A.C.M. Correia, G. Boué, J. Laskar, A. Rodrguez, Astron. Astrophys. 571, A50 (2014).

    Article  ADS  Google Scholar 

  17. S. Ferraz-Mello, Astron. Astrophys. 579, A97 (2015).

    Article  ADS  Google Scholar 

  18. G.O. Gomes, H.A. Folonier, S. Ferraz-Mello, Celest. Mech. Dyn. Astr. 131, 56 (2019).

    Article  ADS  Google Scholar 

  19. S. Ferraz-Mello, H. Folonier, M. Tadeu dos Santos, S. Csizmadia, J.D. do Nascimento, M. Pätzold, Astrophys. J. 807, 78 (2015).

    Article  ADS  Google Scholar 

  20. R. Tajeddine, N. Rambaux, V. Lainey, S. Charnoz, et al., Science 346, 322 (2014).

    Article  ADS  Google Scholar 

  21. P. Hut, Astron. Astrophys. 99, 126 (1981).

    ADS  Google Scholar 

  22. G.H. Darwin, Philos. Trans. 171 (1880) 713 [repr. Scientific Papers Vol. II, Cambridge, 1908].

    Article  Google Scholar 

  23. H. Essén, Int. J. Geosci. 5, 555 (2014).

    Article  Google Scholar 

  24. P. Goldreich, MNRAS 126, 257 (1963).

    Article  ADS  Google Scholar 

  25. W.M. Kaula, Rev. Geophys. 3, 661 (1964).

    Article  ADS  Google Scholar 

  26. G.F. MacDonald, Rev. Geophys. 2, 467 (1964).

    Article  ADS  Google Scholar 

  27. H.A. Folonier, S. Ferraz-Mello, Tidal dissipation in differentiated synchronized Icy satelites, Application to Enceladus (submitted).

  28. H.A. Folonier, S. Ferraz-Mello, Celest. Mech. Dyn. Astr. 129, 359 (2017).

    Article  ADS  Google Scholar 

  29. S. Ferraz-Mello, Planetary tides: theories, in Satellite Dynamics and Space Missions, edited by G. Baù, et al. (Springer-Nature, Switzerland, 2019), pp. 1–50.

    Google Scholar 

  30. G. Beutler, Methods of Celestial Mechanics (Springer, Berlin, 2005).

  31. S. Ferraz-Mello, C. Beaugé, T.A. Michtchenko, Celest. Mech. Dyn. Astr. 87, 99 (2003).

    Article  ADS  Google Scholar 

  32. L.M. Cathles, Viscosity of the Earth’s Mantle (Princeton University Press, Princeton, 2015).

  33. P. Melchior, Earth Tides Geophysical Surveys 1, 275 (1974).

    Article  ADS  Google Scholar 

  34. H. Folonier, S. Ferraz-Mello, K.V. Kholshevnikov, Celest. Mech. Dyn. Astron. 122, 183 (2015).

    Article  ADS  Google Scholar 

  35. R. Haas, H. Schuh, J. Wünsch, Determination of tidal parameters from VLBI Data, in 11th Working Meeting on European VLBI for Geodesy and Astrometry, Onsala Sweden (1996), pp. 162–171.

  36. R.D. Ray, R.J. Eanes, B.F. Chao, Nature 381, 595 (1996).

    Article  ADS  Google Scholar 

  37. R.D. Ray, R.J. Eanes, F.G. Lemoine, Geophys. J. Int. 144, 471 (2001).

    Article  ADS  Google Scholar 

  38. C. Doglioni, A. Ismail-Zadeh, G. Panza, F. Riguzzi, Phys. Earth Planet. Inter. 189, 1 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvio Ferraz-Mello.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claimsin published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferraz-Mello, S., Beaugé, C., Folonier, H.A. et al. Tidal friction in satellites and planets. The new version of the creep tide theory. Eur. Phys. J. Spec. Top. 229, 1441–1462 (2020). https://doi.org/10.1140/epjst/e2020-900184-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900184-5

Navigation