Skip to main content
Log in

A new hidden attractor hyperchaotic memristor oscillator with a line of equilibria

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, a new hyperchaotic memristor oscillator is proposed. Different dynamical properties of the proposed system such as dissipativity, equilibrium points, and their stabilities, Lyapunov exponents and Kaplan-Yorke dimension are investigated. The system has a line of equilibria. Thus it belongs to the category of systems with hidden attractors. Investigation of the stability of the line of equilibria shows that the line is stable in some intervals and unstable in some others. Bifurcation analysis of the system reveals several coexisting attractors in some range of parameters which indicates multistability. Various coexisting attractors of the proposed system are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O.E. Rössler, Phys. Lett. A 57, 397 (1976).

    ADS  Google Scholar 

  2. E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).

    ADS  Google Scholar 

  3. G. Chen, T. Ueta, Int. J. Bifurc. Chaos 9, 1465 (1999).

    Google Scholar 

  4. L. Nian-Qiang, P. Wei, Y. Lian-Shan, L. Bin, X. Ming-Feng, J. Ning, Chin. Phys. B 20, 060502 (2011).

    Google Scholar 

  5. V.T. Pham, C. Volos, S. Jafari, Z. Wei, X. Wang, Int. J. Bifurc. Chaos 24, 1450073 (2014).

    Google Scholar 

  6. Z. Wei, I. Moroz, Z. Wang, J.C. Sprott, T. Kapitaniak, Int. J. Bifurc. Chaos 26, 1650125 (2016).

    Google Scholar 

  7. M. Nourian Zavareh, F. Nazarimehr, K. Rajagopal, S. Jafari, , J. Int. Bifurc. Chaos 28, 1850171 (2018).

    Google Scholar 

  8. M.F. Danca, N. Kuznetsov, Chaos Solitons Fractals 103, 144 (2017).

    ADS  MathSciNet  Google Scholar 

  9. D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Phys. Rep. 637, 1 (2016).

    ADS  MathSciNet  Google Scholar 

  10. S. Jafari, J. Sprott, F. Nazarimehr, Eur. Phys. J. Special Topics 224, 1469 (2015).

    ADS  Google Scholar 

  11. Z. Wei, P. Yu, W. Zhang, M. Yao, Nonlinear Dyn. 82, 131 (2015).

    Google Scholar 

  12. Z. Wei, V.T. Pham, T. Kapitaniak, Z. Wang, Nonlinear Dyn. 85, 1635 (2016).

    Google Scholar 

  13. X. Zhu, W.S. Du, Mathematics 7, 94 (2019).

    Google Scholar 

  14. D. Angeli, J.E. Ferrell, E.D. Sontag, Proc. Natl. Acad. Sci. USA 101, 1822 (2004).

    ADS  Google Scholar 

  15. E. Dong, M. Yuan, S. Du, Z. Chen, Appl. Math. Model. 73, 40 (2019).

    MathSciNet  Google Scholar 

  16. K. Rajagopal, S. Jafari, V.T. Pham, Z. Wei, D. Premraj, K. Thamilmaran, et al., Int. J. Bifurc. Chaos 29, 1950032 (2019).

    Google Scholar 

  17. G. Wang, C. Shi, X. Wang, F. Yuan, Math. Prob. Eng. 2017, 6504969 (2017).

    Google Scholar 

  18. H. Liang, Y. Tang, L. Li, Z. Wei, Z. Wang, Kybernetika 49, 935 (2013).

    MathSciNet  Google Scholar 

  19. J. Li, Y. Liu, Z. Wei, Adv. Differ. Equ. 2018, 1 (2018).

    Google Scholar 

  20. F. Nazarimehr, S. Jafari, G. Chen, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, et al., Int. J. Bifurc. Chaos 27, 1750221 (2017).

    Google Scholar 

  21. Z. Wei, I. Moroz, J.C. Sprott, Z. Wang, W. Zhang, Int. J. Bifurc. Chaos 27, 1730008 (2017).

    Google Scholar 

  22. S. Kacar, Z. Wei, A. Akgul, B. Aricioglu, Z. Naturforsch. A 73, 595 (2018).

    ADS  Google Scholar 

  23. Z. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec, Appl. Math. Comput. 347, 265 (2019).

    MathSciNet  Google Scholar 

  24. Z. Li, M. Ma, M. Wang, Y. Zeng, , AEU Int. J. Electron. Commun. 71, 21 (2017).

    Google Scholar 

  25. M. Sahin, Z.G. Cam Taskiran, H. Guler, S. Hamamci, Sens. Actuators A 290, 107 (2019).

    Google Scholar 

  26. M.F. Tolba, A.M. AbdelAty, N.S. Soliman, L.A. Said, A.H. Madian, A.T. Azar, et al., AEU Int. J. Electron. Commun. 78, 162 (2017).

    Google Scholar 

  27. M. Tuna, M. Alçn, İ. Koyuncu, C.B. Fidan, İ. Pehlivan, Microprocess. Microsyst. 66, 72 (2019).

    Google Scholar 

  28. A. Buscarino, L. Fortuna, M. Frasca, Int. J. Bifurc. Chaos 24, 1450085 (2014).

    Google Scholar 

  29. N.A. Kant, M.R. Dar, F.A. Khanday, C. Psychalinos, Circuits Syst, Signal Process. 36, 4844 (2017).

    Google Scholar 

  30. B. Bao, A. Hu, H. Bao, Q. Xu, M. Chen, H. Wu, Complexity 2018 (2018).

  31. F. Nazarimehr, S. Jafari, S.M.R.H. Golpayegani, L.H. Kauffman, Int. J. Bifurc. Chaos 27, 1750201 (2017).

    Google Scholar 

  32. F. Meng, X. Zeng, Z. Wang, Indian J. Phys. 93, 1187 (2019).

    ADS  Google Scholar 

  33. C. Li, J.C. Sprott, W. Thio, Phys. Lett. A 379, 888 (2015).

    MathSciNet  Google Scholar 

  34. C. Li, J.C. Sprott, Z. Yuan, H. Li, Int. J. Bifurc. Chaos 25, 1530025 (2015).

    Google Scholar 

  35. K. Rajagopal, L. Guessas, A. Karthikeyan, A. Srinivasan, G. Adam, Complexity 2017, 1892618 (2017).

    Google Scholar 

  36. L. Chua, IEEE Trans. Circuits Theory 18, 507 (1971).

    Google Scholar 

  37. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 80 (2008).

    ADS  Google Scholar 

  38. J. Kengne, S. Njikam, V.F. Signing, Chaos Solitons Fractals 106, 201 (2018).

    ADS  MathSciNet  Google Scholar 

  39. Y. Wang, J. Ma, Y. Xu, F. Wu, P. Zhou, Int. J. Bifurc. Chaos 27, 1750030 (2017).

    Google Scholar 

  40. K. Rajagopal, F. Nazarimehr, A. Karthikeyan, A. Srinivasan, S. Jafari, Asian J. Control (2018).

  41. R. Rakkiyappan, R. Sivasamy, X. Li, Circuits Syst, Signal Process. 34, 763 (2015).

    Google Scholar 

  42. L.O. Chua, S.M. Kang, Proc. IEEE 64, 209 (1976).

    MathSciNet  Google Scholar 

  43. K. Rajagopal, V.T. Pham, F.R. Tahir, A. Akgul, H.R. Abdolmohammadi, S. Jafari, Pramana 90, 52 (2018).

    ADS  Google Scholar 

  44. B. Xu, G. Wang, H.H.C. Iu, S. Yu, F. Yuan, Nonlinear Dyn. 96, 765 (2019).

    Google Scholar 

  45. F. Corinto, V. Krulikovskyi, S.D. Haliuk, Memristor-based chaotic circuit for pseudo-random sequence generators, in Electrotechnical Conference (MELECON), 2016 18th Mediterranean (2016), pp. 1–3.

  46. M. Borah, B.K. Roy, Chaos Solitons Fractals (2017).

  47. C.L. Xiaoyu Hu, L. Liu, Y. Yao, G. Zheng, Chin. Phys. B 26, 110502 (2017).

    Google Scholar 

  48. Z. Wei, Phys. Lett. A 376, 102 (2011).

    ADS  MathSciNet  Google Scholar 

  49. S. Jafari, J. Sprott, S.M.R.H. Golpayegani, Phys. Lett. A 377, 699 (2013).

    ADS  MathSciNet  Google Scholar 

  50. F. Nazarimehr, S. Jafari, S.M.R.H. Golpayegani, J.C. Sprott, Int. J. Bifurc. Chaos 27, 1750023 (2017).

    Google Scholar 

  51. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viet-Thanh Pham.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Rajagopal, K., Khalaf, A.J.M. et al. A new hidden attractor hyperchaotic memristor oscillator with a line of equilibria. Eur. Phys. J. Spec. Top. 229, 1279–1288 (2020). https://doi.org/10.1140/epjst/e2020-900097-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-900097-0

Navigation