Skip to main content
Log in

Infrared Emission from rocks in the Thermal Infrared (TIR) window

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Satellite data provide ground surface temperatures based on the intensity of the thermal infrared (TIR) emission. TIR anomalies that appear to be related to impending earthquake activity were first reported more than 25 years ago. They can reach 10–15 K. To account for such temperature anomalies, it has been widely assumed that, prior to major earthquakes, warm gases or radon are emanating from the ground around the future epicenter. Here a radically different explanation is presented based on the growing evidence that rocks in the Earth's crust contain peroxy defects in their constituent mineral grains. Peroxy defects consist of pairs of tightly coupled O such as in O3Si-OO-SiO3. Upon application of stress the electrically inactive peroxy defects can break up, releasing highly mobile electronic charge carriers: defect electrons in the O2-sublattice, called positive holes, symbolized by h. The h are the electronic wave function associated with O in a matrix of O2−. They have the remarkable ability to flow out of the stressed rock volume, spreading fast and far. At the Earth's surface the h become trapped, preferentially at topographic highs. As they recombine, returning to the peroxy state, IR photons of specific energies are emitted in the Thermal Infrared (TIR) window. In laboratory and field experiments rocks were subjected to stress either by loading one end of a rectangular chunk of a black quartz-bearing diorite via a hydraulic press or by stressing granite boulders from the inside out via expanding BUSTAR cement in boreholes. The TIR emission was recording during the build-up of stress up to failure of the rocks. Principal components analysis and a novel application of fluctuation spectroscopy identified several previously unknown phenomena, in particular a series of TIR emission bands that are consistent with the radiative de-excitation of vibrationally “hot” states of peroxy bonds forming at the rock surface and to pink noise suggestive of electron/hole trapping like in semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Gornyi, et al., Proc. Acad. Sci. USSR 301, 67 (1988).

    Google Scholar 

  2. Z.-J. Qiang, X.-D. Xu, C.-D. Dian, Chin. Sci. Bull. 36, 319 (1991).

    Google Scholar 

  3. S.K. Srivastav, et al., Curr. Sci. 72, 880 (1997).

    Google Scholar 

  4. R. Corrado, et al., Nat. Hazards Earth Sys. Sci. 5, 101 (2005).

    Article  ADS  Google Scholar 

  5. C. Cui, et al., Monitoring the thermal IR anomaly of Zhangbei earthquake precursor by satellite Remote sensing technique (ACRS, 1999).

  6. C. Filizzola, et al., Phys. Chem. Earth (2004) 29, 517 (2005).

    Article  Google Scholar 

  7. N. Genzano, C. Aliano, R. Corrado, C. Filizzola, M. Lisi, G. Mazzeo, R. Paciello, N. Pergola, V. Tramutoli, Nat. Hazards Earth Syst. Sci. 9, 2073 (2009).

    Article  ADS  Google Scholar 

  8. M. Lisi, et al., Nat. Hazards Earth Syst. Sci. 10, 395 (2010).

    Article  ADS  Google Scholar 

  9. K. Qin, et al., Mechanisms and relationship to soil moisture of surface latent heat flux anomaly before Inland earthquakes. in Geoscience and Remote Sensing Symposium (IGARSS) ((IEEE International, 2012).

  10. V. Tramutoli, et al., Remote Sens. Environ. 96, 409 (2005).

    Article  ADS  Google Scholar 

  11. V. Tramutoli, C. Aliano, R. Corrado, C. Filizzola, N. Genzano, M. Lisi, G. Martinelli, N. Pergola, Chem. Geol. 339, 157 (2013).

    Article  ADS  Google Scholar 

  12. A.A. Tronin, in IGARSS 2000; IEEE 2000 international geoscience and remote sensing symposium. Thermal satellite data for earthquake research, Taking the pulse of the planet: the role of remote sensing in managing the environment (IEEE, Honolulu, HI, 2000).

  13. A.A. Tronin, Atmosphere-lithosphere coupling: Thermal anomalies on the Earth surface, seismic process, in: Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling, edited by M. Hayakawa, O.A. Molchanov (Terra Scientific Publ, Tokyo, 2002), pp. 173–176.

  14. A.A. Tronin, et al., Phys. Chem. Earth 29, 501 (2004).

    Article  ADS  Google Scholar 

  15. L. Piroddi, et al., Geophys. J. Int. 197, 1532 (2014).

    Article  ADS  Google Scholar 

  16. C.-H. Chen, S.W.C.-H. Wang, T.-K. Yeh, C.-H. Lin, J.-Y. Liu, H.-Y. Yen, C. Lin, R.-J. Rau, T.-W. Lin, Hydrol. Earth Syst. Sci. 17, 1693 (2013).

    Article  ADS  Google Scholar 

  17. R.K. Chadha, A.P. Pandey, H.J. Kuempel, Geophy. Res. Lett. 30, 69 (2003).

    Article  Google Scholar 

  18. V. Rawat, et al., Nat. Hazards 59, 33 (2012).

    Article  Google Scholar 

  19. A.A. Tronin, Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, edited by M. Hayakawa (Terra Sci. Publ., Tokyo, Japan, 1999), pp. 717–746.

  20. M.A. Dunajecka, S.A. Pulinets, Atmósfera 18, 236 (2005).

    Google Scholar 

  21. D. Ouzounov, et al., Tectonophys. 431, 211 (2007).

    Article  ADS  Google Scholar 

  22. S.A. Pulinets, et al., Multi-parameter precursory activity before L’Aquila earthquake revealed by joint satellite and ground observations, in American Geophysical Union Fall Meeting 2011 (AGU, San Fransisco, 2011), p. NH22A-02.

  23. S.A. Pulinets, et al., Phys. Chem. Earth 31, 143 (2006).

    Article  ADS  Google Scholar 

  24. K. Qin, S.Z. Lixin, X. Wu, Y. Bai, L.V. Xiaojian, Adv. Space Res. 54, 1029 (2014).

    Article  ADS  Google Scholar 

  25. L. Wu, K. Qin, L. Shan-Jun, Proc. IEEE 100, 2891 (2012).

    Article  Google Scholar 

  26. W. Zhang, et al., Nat. Hazards Earth Syst. Sci. Discuss 1, 2667 (2013).

    ADS  Google Scholar 

  27. F.T. Freund, M.M. Freund, J. Asian Earth Sci. 2015, 373 (2015).

    Article  ADS  Google Scholar 

  28. W.D. Nesse, Introduction to Mineralogy (Oxford University Press, New York, 2000).

  29. F. Freund, H. Wengeler, J. Phys. Chem. Solids 43, 129 (1982).

    Article  ADS  Google Scholar 

  30. F. Freund, et al., Mid-infrared luminescence observed during rock deformation, in Spring Meeting (Amer. Geophys. Union, Washington, DC, 2002).

  31. F.T. Freund, Nat. Hazards Earth Syst. Sci. 7, 1 (2007).

    Article  Google Scholar 

  32. F.T. Freund, Nat. Hazards Earth Syst. Sci. 7, 8 (2007).

    Google Scholar 

  33. F.T. Freund, Acta Geophys. 58, 719 (2010).

    Article  ADS  Google Scholar 

  34. J. Scoville, J. Sornette, F.T. Freund, J. Asian Earth Sci. 114, Part 2, 338 (2015).

    Article  ADS  Google Scholar 

  35. B.V. King, F. Freund, Phys. Rev. B 29, 5814 (1984).

    Article  ADS  Google Scholar 

  36. H. Kathrein, F. Freund, J. Phys. Chem. Solids 44, 177 (1983).

    Article  ADS  Google Scholar 

  37. D. Ricci, et al., Phys. Rev. B 64, 224104 1 (2001).

    Article  ADS  Google Scholar 

  38. F.T. Freund, et al., eEarth 2, 1 (2007).

    Article  ADS  Google Scholar 

  39. F.T. Freund, et al., J. Atmos. Sol. Terr. Phys. 71, 1824 (2009).

    Article  ADS  Google Scholar 

  40. T. Bleier, et al., Nat. Hazards Earth Syst. Sci. 9, 585 (2009).

    Article  ADS  Google Scholar 

  41. A.V. Tyrtyshinikov, Phys. Solid Earth 31, 789 (1996).

    Google Scholar 

  42. J.M. Warwick, C. Stoker, T.R. Meyer, J. Geophys. Res. 87, 2851 (1982).

    Article  ADS  Google Scholar 

  43. L. Piroddi, Sistimo di teleriilevamento termico per il montoraggion e la pervenzione dei rischi naturali: il caso sismico, in Civil Enginieering, Università degli Studi di Cagliari, Italy, 2010, p. 163.

  44. L. Piroddi, G. Ranieri, Sel. Top. Appl. Earth Obs. Remote Sens. 5, 307 (2012).

    Article  ADS  Google Scholar 

  45. N. Bryant, A. Zobrist, T. Logan, Precision Automatic Co-Registration Procedures for Spacecraft Sensors, in Annual Meeting, American Society of Photogrammetry and Remote Sensing(Denver, CO, 2004).

  46. N.A. Bryant, et al., Eos Trans. AGU 83 (2002) S71C–1106.

    Google Scholar 

  47. N.A. Bryant, et al., Observed Weather Satellite Thermal Response Prior-to and After Earthquakes, in Fall Meeting (American Geophysical Union, San Francisco, CA, 2003).

  48. N.A. Bryant, et al., Geosynchronous Weather Satellite Thermal IR Measurements Prior to Earthquakes, in Fall Meeting (American Geophysical Union, San Francisco, CA, 2004).

  49. J. Boardman, F. Kruse, Automated Spectral Analysis: A Geologic Example using AVIRIS Data, North Grapevine Mountains, Nevada, in ERIM Tenth Thematic Conference on Geologic Remote Sensing (1994).

  50. G. Feher, M. Weissman, Proc. Nat. Acad. Sci. 70, 870 (1973).

    Article  ADS  Google Scholar 

  51. P.G. van Dokkum, C. Conroy, ApJ 797, 56 (2014).

    Article  ADS  Google Scholar 

  52. M. Priestley, T. Rao, J.R. Stat, Soc. Ser. B 31, 140 (1969).

    Google Scholar 

  53. A.L. McWhorter, 1/f noise and related surface effects in germanium, in Dept. of Electrical Engineering 1955, (Massachusetts Institute of Technology, 1955), pp. 207–228.

  54. D. Ricci, et al., Phys. Rev. B 64, 224104–1 (2001).

    Article  ADS  Google Scholar 

  55. J.B. Johnson, Phys. Rev. 32, 97 (1928).

    Article  ADS  Google Scholar 

  56. J.B. Johnson, Phys. Rev. 26, 71 (1925).

    Article  ADS  Google Scholar 

  57. J.E. Nyquist, C.E. Corry, Leading Edge 21, 446 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann T. Freund.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scoville, J., Freund, F.T. Infrared Emission from rocks in the Thermal Infrared (TIR) window. Eur. Phys. J. Spec. Top. 230, 85–109 (2021). https://doi.org/10.1140/epjst/e2020-000246-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2020-000246-4

Navigation