Skip to main content
Log in

Unfolding of DNA by co-solutes: insights from Kirkwood–Buff integrals and transfer free energies

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Many organic co-solutes are known to stabilize or to destabilize native structures of proteins or DNA. Most of these effects can be explained by co-solute binding or exclusion mechanisms. A beneficial approach to study the underlying principles relies on the computation of Kirkwood–Buff integrals, which can be also used to derive detailed expressions for transfer free energies and changes of the chemical equilibrium between the unfolded and the native states. In this article, we use the framework of Kirkwood–Buff theory in order to study the influence of ectoine on the stability of short DNA hairpins. Our results highlight a strong binding of ectoine, which reveals a pronounced destabilization of DNA in good agreement with experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Lo Nostro, B.W. Ninham, Chem. Rev. 112, 2286 (2012)

    Article  Google Scholar 

  2. W. Kunz, Specific ion effects (World Scientific, Singapore, 2010)

  3. K.D. Collins, Methods 34, 300 (2004)

    Article  Google Scholar 

  4. Y. Marcus, Chem. Rev. 109, 1346 (2009)

    Article  Google Scholar 

  5. A. Salis, B.W. Ninham, Chem. Soc. Rev. 43, 7358 (2014)

    Article  Google Scholar 

  6. J. Smiatek, R.K. Harishchandra, O. Rubner, H.-J. Galla, A. Heuer, Biophys. Chem. 160, 62 (2012)

    Article  Google Scholar 

  7. J. Smiatek, R.K. Harishchandra, H.-J. Galla, A. Heuer, Biophys. Chem. 180, 102 (2013)

    Article  Google Scholar 

  8. J. Smiatek, J. Phys. Chem. B 118, 771 (2014)

    Article  Google Scholar 

  9. M.B. Hahn, T. Solomun, R. Wellhausen, S. Hermann, H. Seitz, S. Meyer, H.-J. Kunte, J. Zeman, F. Uhlig, J. Smiatek, J. Phys. Chem. B 119, 15212 (2015)

    Article  Google Scholar 

  10. M.B. Hahn, F. Uhlig, T. Solomun, J. Smiatek, H. Sturm, Phys. Chem. Chem. Phys. 18, 28398 (2016)

    Article  Google Scholar 

  11. M.A. Schroer, J. Michalowsky, B. Fischer, J. Smiatek, G. Grübel, Phys. Chem. Chem. Phys. 18, 31459 (2016)

    Article  Google Scholar 

  12. Y. Marcus, Ions in solution and their solvation (John Wiley & Sons, NY, 2015)

  13. E. Courtenay, M. Capp, C. Anderson, M. Record, Biochemistry 39, 4455 (2000)

    Article  Google Scholar 

  14. S.N. Timasheff, Biochemistry 41, 13473 (2002)

    Article  Google Scholar 

  15. S. Shimizu, D.J. Smith, J. Chem. Phys. 121, 1148 (2004)

    Article  ADS  Google Scholar 

  16. S. Shimizu, Proc. Natl. Acad. Sci. USA 101, 1195 (2004)

    Article  ADS  Google Scholar 

  17. S. Shimizu, C.L. Boon, J. Chem. Phys. 121, 9147 (2004)

    Article  ADS  Google Scholar 

  18. M. Aburi, P.E. Smith, J. Phys. Chem. B 108, 7382 (2004)

    Article  Google Scholar 

  19. P.E. Smith, Biophys. J. 91, 849 (2006)

    Article  ADS  Google Scholar 

  20. J. Rösgen, B.M. Pettitt, D.W. Bolen, Biophys. J. 89, 2988 (2005)

    Article  Google Scholar 

  21. P.E. Smith, J. Phys. Chem. B 108, 18716 (2004)

    Article  Google Scholar 

  22. J. Smiatek, J. Phys. Condens. Matter 29, 233001 (2017)

    Article  ADS  Google Scholar 

  23. E.A. Oprzeska-Zingrebe, J. Smiatek, Biophys. Rev. 10, 809 (2018)

    Article  Google Scholar 

  24. V. Pierce, M. Kang, M. Aburi, S. Weerasinghe, P.E. Smith, Cell. Biochem. Biophys. 50, 1 (2008)

    Article  Google Scholar 

  25. E.A. Oprzeska-Zingrebe, J. Smiatek, Biophys. J. 114, 1551 (2018)

    Article  ADS  Google Scholar 

  26. P.E. Smith, J. Phys. Chem. B 103, 525 (1999)

    Article  Google Scholar 

  27. J.G. Kirkwood, F.P. Buff, J. Chem. Phys. 19, 774 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Ben-Naim, Statistical thermodynamics for chemists and biochemists (Springer Science & Business Media, Berlin, 2013)

  29. P.E. Smith, E. Matteoli, J.P. O’Connell, Fluctuation theory of solutions: applications in chemistry, chemical engineering, and biophysics (CRC Press, Boca Raton, 2013)

  30. A. Ben-Naim, J. Chem. Phys. 67, 4884 (1977)

    Article  ADS  Google Scholar 

  31. T. Kobayashi, J.E. Reid, S. Shimizu, M. Fyta, J. Smiatek, Phys. Chem. Chem. Phys. 19, 18924 (2017)

    Article  Google Scholar 

  32. P.E. Smith, J. Chem. Phys. 129, 124509 (2008)

    Article  ADS  Google Scholar 

  33. A.N. Krishnamoorthy, C. Holm, J. Smiatek, J. Phys. Chem. C 122, 10293 (2018)

    Article  Google Scholar 

  34. S. Shimizu, N. Matubayasi, Phys. A 492, 1988 (2018)

    Article  MathSciNet  Google Scholar 

  35. S.K. Schnell, P. Englebienne, J.-M. Simon, P. Krüger, S.P. Balaji, S. Kjelstrup, D. Bedeaux, A. Bardow, T.J. Vlugt, Chem. Phys. Lett. 582, 154 (2013)

    Article  ADS  Google Scholar 

  36. J. Milzetti, D. Nayar, N.F. van der Vegt, J. Phys. Chem. B 122, 5515 (2018)

    Article  Google Scholar 

  37. I.L. Shulgin, E. Ruckenstein, J. Phys. Chem. B 112, 14665 (2008)

    Article  Google Scholar 

  38. P.W. Atkins, J. de Paula, Physical chemistry 2010 (Oxford University Press, Oxford)

  39. I.L. Shulgin, E. Ruckenstein, J. Chem. Phys. 123, 054909 (2005)

    Article  ADS  Google Scholar 

  40. E. Ruckenstein, I.L. Shulgin, Adv. Coll. Interface Sci. 123, 97 (2006)

    Article  Google Scholar 

  41. D.R. Canchi, A.E. Garca, Annu. Rev. Phys. Chem. 64, 273 (2013)

    Article  ADS  Google Scholar 

  42. B.M. Baynes, B.L. Trout, J. Phys. Chem. B 107, 14058 (2003)

    Article  Google Scholar 

  43. E.A. Oprzeska-Zingrebe, S. Meyer, A. Roloff, H.-J. Kunte, J. Smiatek, Phys. Chem. Chem. Phys. 20, 25861 (2018)

    Article  Google Scholar 

  44. P. Padrta, R. Štefl, L. Králík, L. Žídek, V. Sklenář, J. Biomol. NMR 24, 1 (2002)

    Article  Google Scholar 

  45. P. Padrta, R. Štefl, L. Žídek, V. Sklenář, RCSB protein data bank ID: 1KR8, http://www.rcsb.org/pdb/explore/explore.do?structureId=1KR8, [Online; accessed 01-October-2018](2002)

  46. S. Micciulla, J. Michalowsky, M.A. Schroer, C. Holm, R. von Klitzing, J. Smiatek, Phys. Chem. Chem. Phys. 18, 5324 (2016)

    Article  Google Scholar 

  47. D. Diddens, V. Lesch, A. Heuer, J. Smiatek, Phys. Chem. Chem. Phys. 19, 20430 (2017)

    Article  Google Scholar 

  48. V. Lesch, A. Heuer, V.A. Tatsis, C. Holm, J. Smiatek, Phys. Chem. Chem. Phys. 17, 26049 (2015)

    Article  Google Scholar 

  49. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)

    Article  Google Scholar 

  50. I. Ivani, P.D. Dans, A. Noy, A. Pérez, I. Faustino, A. Hospital, J. Walther, P. Andrio, R.G. Ni, A. Balaceanu, G. Portella, F. Battistini, J.L. Gelpí, C. González, M. Vendruscolo, C.A. Laughton, S.A. Harris, D.A. Case, M. Orozco, Nature Meth. 13, 55 (2016)

    Article  Google Scholar 

  51. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  52. J. Wang, R.M. Wolf, J.W. Caldwell, P.A. Kollman, D.A. Case, J. Comput. Chem. 25, 1157 (2004)

    Article  Google Scholar 

  53. J. Wang, W. Wang, P.A. Kollman, D.A. Case, J. Mol. Graph. Model. 25, 247 (2006)

    Article  ADS  Google Scholar 

  54. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  55. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  56. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)

    Article  ADS  Google Scholar 

  57. A.N. Krishnamoorthy, K. Oldiges, A. Heuer, M. Winter, I. Cekic-Laskovic, C. Holm, J. Smiatek, Phys. Chem. Chem. Phys. 20, 25701 (2018)

    Article  Google Scholar 

  58. T. Janzen, S. Zhang, A. Mialdun, G. Guevara-Carrion, J. Vrabec, M. He, V. Shevtsova, Phys. Chem. Chem. Phys. 19, 31856 (2017)

    Article  Google Scholar 

  59. Sigma Aldrich: Ectoine Product Information, https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Product_Information_Sheet/e2271pis.pdf [Online; accessed 01-October-2018](2007)

  60. M. Schnoor, P. Voß, P. Cullen, T. Böking, H.-J. Galla, E.A. Galinski, S. Lorkowski, Biochem. Biophys. Res. Commun. 322, 867 (2004)

    Article  Google Scholar 

  61. S. Patra, C. Anders, N. Erwin, R. Winter, Angew. Chem. Int. Ed. 129, 5127 (2017)

    Article  Google Scholar 

  62. S. Patra, C. Anders, P.H. Schummel, R. Winter, Phys. Chem. Chem. Phys. 20, 13159 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Smiatek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprzeska-Zingrebe, E.A., Kohagen, M., Kästner, J. et al. Unfolding of DNA by co-solutes: insights from Kirkwood–Buff integrals and transfer free energies. Eur. Phys. J. Spec. Top. 227, 1665–1679 (2019). https://doi.org/10.1140/epjst/e2019-800163-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800163-5

Navigation