Skip to main content
Log in

Efficiencies of power plants, quasi-static models and the geometric-mean temperature

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Observed efficiencies of industrial power plants are often approximated by the square-root formula: 1 − √T /T +, where T +(T ) is the highest (lowest) temperature achieved in the plant. This expression can be derived within finite-time thermodynamics, or, by entropy generation minimization, based on finite rates for the processes. In these analyses, a closely related quantity is the optimal value of the intermediate temperature for the hot stream, given by the geometric-mean value: √T +/T . In this paper, instead of finite-time models, we propose to model the operation of plants by quasi-static work extraction models, with one reservoir (source/sink) as finite, while the other as practically infinite. No simplifying assumption is made on the nature of the finite system. This description is consistent with two model hypotheses, each yielding a specific value of the intermediate temperature, say T 1 and T 2. The lack of additional information on validity of the hypothesis that may be actually realized, motivates to approach the problem as an exercise in inductive inference. Thus we define an expected value of the intermediate temperature as the equally weighted mean: (T 1 + T 2)/2. It is shown that the expected value is very closely given by the geometric-mean value for almost all of the observed power plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  2. A. Bejan, in Advanced Engineering Thermodynamics (Wiley, New York, 1997), p. 377

  3. M. Esposito, R. Kawai, K. Lindenberg, C. Van den Broeck, Phys. Rev. Lett. 105, 150603 (2010)

    Article  ADS  Google Scholar 

  4. G.B. Moreau, M.L.S. Schulman, Phys. Rev. B 85, 021129 (2012)

    Article  ADS  Google Scholar 

  5. H.B. Reitlinger, Sur l’utilisation de la chaleur dans les machines à feu (“On the use of heat in steam engines”, in French) (Vaillant-Carmanne, Liége, Belgium, 1929)

  6. P. Chambadal, in Les Centrales Nucléaires (Armand Colin, Paris, France, 1957), pp. 41–58

  7. I. Novikov, J. Nucl. Energy II 7, 125 (1958)

    Google Scholar 

  8. A. Vaudrey, F. Lanzetta, M. Feidt, J. Noneq. Therm. 39, 199 (2014)

    Google Scholar 

  9. G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-equilibrium Thermodynamics: Foundations, Applications, Frontiers (Springer-Verlag, Berlin, Heidelberg, 2008)

  10. B. Andresen, Angew. Chem. 50, 2690 (2011)

    Article  Google Scholar 

  11. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  12. M. Borlein, Kerntechnik (Vogel Buchverlag, Wurzburg, Germany, 2009)

  13. W. Thomson, Phil. Mag. 5, 102 (1853)

    Google Scholar 

  14. M.J. Ondrechen, B. Andresen, M. Mozurchewich, R.S. Berry, Am. J. Phys. 49, 681 (1981)

    Article  ADS  Google Scholar 

  15. H.S. Leff, Am. J. Phys. 55, 602 (1986)

    Article  ADS  Google Scholar 

  16. B.H. Lavenda, Am. J. Phys. 75, 169 (2007)

    Article  ADS  Google Scholar 

  17. R.S. Johal, R. Rai, Europhys. Lett. 113, 10006 (2016)

    Article  ADS  Google Scholar 

  18. R.S. Johal, Phys. Rev. E 94, 012123 (2016)

    Article  ADS  Google Scholar 

  19. Y. Izumida, K. Okuda, Phys. Rev. Lett. 112, 180603 (2014)

    Article  ADS  Google Scholar 

  20. M.J. Moran, H.N. Shapiro, D.D. Boettner, M.B. Bailey, in Fundamentals of Engineering Thermodynamics, 7th edn. (Wiley, New York, 2010), Chap. 7

  21. H. Jeffreys, Theory of Probability, 2nd edn. (Clarendon Press, Oxford, 1948)

  22. E.T. Jaynes, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003)

  23. P.S. Laplace, Memoir on the Probabilities of the Causes and Events, Stat. Sc. 1, 364 (translated by S.M. Stigler, 1986)

    Article  Google Scholar 

  24. E.T. Jaynes, The evolution of Carnot’s principle, in Maximum-Entropy and Bayesian Methods in Science and Engineering, edited by G.J. Erickson, C.R. Smith (Kluwer, Dordrecht, 1988)

  25. J. Yvon, The Saclay Reactor: Two years experience in heat transfer by means of compressed gas as heat transfer agent, in Proceedings of the International Conference on Peaceful Uses of Atomic Energy (Geneva, Switzerland, 1955)

  26. R.S. Johal, Phys. Rev. E 82, 061113 (2010)

    Article  ADS  Google Scholar 

  27. G. Thomas, R.S. Johal, J. Phys. A: Math. Theor. 48, 335002 (2015)

    Article  Google Scholar 

  28. P. Aneja, R.S. Johal, J. Phys. A: Math. Theor. 46, 365002 (2013)

    Article  ADS  Google Scholar 

  29. R.S. Johal, R. Rai, G. Mahler, Found. Phys. 45, 158 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramandeep S. Johal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johal, R.S. Efficiencies of power plants, quasi-static models and the geometric-mean temperature. Eur. Phys. J. Spec. Top. 226, 489–498 (2017). https://doi.org/10.1140/epjst/e2016-60265-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60265-9

Navigation