Skip to main content
Log in

Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling

  • Regular Article
  • Specific Models to Tackle Fundamental Questions
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We use coarse-grained (CG) simulations to study the deformation of empty Cowpea Chlorotic Mottle Virus (CCMV) capsids under uniaxial compression, from the initial elastic response up to capsid breakage. Our CG model is based on the MARTINI force field and has been amended by a stabilizing elastic network, acting only within individual proteins, that was tuned to capture the fluctuation spectrum of capsid protein dimers, obtained from all atom simulations. We have previously shown that this model predicts force-compression curves that match AFM indentation experiments on empty CCMV capsids. Here we investigate details of the actual breaking events when the CCMV capsid finally fails. We present a symmetry classification of all relevant protein contacts and show that they differ significantly in terms of stability. Specifically, we show that interfaces which break readily are precisely those which are believed to form last during assembly, even though some of them might share the same contacts as other non-breaking interfaces. In particular, the interfaces that form pentamers of dimers never break, while the virtually identical interfaces within hexamers of dimers readily do. Since these units differ in the large-scale geometry and, most noticeably, the cone-angle at the center of the 5- or 6-fold vertex, we propose that the hexameric unit fails because it is pre-stressed. This not only suggests that hexamers of dimers form less frequently during the early stages of assembly; it also offers a natural explanation for the well-known β-barrel motif at the hexameric center as a post-aggregation stabilization mechanism. Finally, we identify those amino acid contacts within all key protein interfaces that are most persistent during compressive deformation of the capsid, thereby providing potential targets for mutation studies aiming to elucidate the key contacts upon which overall stability rests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.H.C. Crick, J.D. Watson, Nature 177, 473 (1956)

    Article  ADS  Google Scholar 

  2. V.S. Reddy, P. Natarajan, B. Okerberg, K. Li, K.V. Damodaran, R.T. Morton, C.L. Brooks, J.E. Johnson, J. Virol. 24, 11943 (2001)

    Article  Google Scholar 

  3. D.L.D. Casper, A. Klug, Cold Spring Harbor Symp. Quant. Biol. 27, 1 (1962)

    Article  Google Scholar 

  4. C.B. Frances, F.K. Thomas, J.B.W. Graheme, F.M. Edgar, D.B. Michael, R.R. John, K. Olga, S. Takehiko, T. Mitsuo, Eur. J. Biochem. 80, 319 (1977)

    Article  Google Scholar 

  5. P.E. Prevelige Jr., D. Thomas, J. King, Biophys. J. 3, 824 (1993)

    Article  Google Scholar 

  6. J.S. Stephen, R.B. Christina, P. Sreenivas, G.L. Warren, M.G. Finn, Z. Adam, Proc. Natl. Acad. Sci. 102, 8138 (2005)

    Article  ADS  Google Scholar 

  7. J.S. Stephen, Z. Adam, J. Mol. Recognit. 19, 542 (2006)

    Article  Google Scholar 

  8. W. Guo-Yi, Z. Xiao-Jing, Y. Chang-Cheng, J. Dong, Z. Ling, L. Yan, W. Lai, W. Yu, C. Hong-Song, J. Chemother. 20, 458 (2008)

    Article  Google Scholar 

  9. S. Jingchuan, D. Chris, D. Marie-Christine, M. Ayaluru, C. Chao, G. Kodetham, S. Barry, D. Mrinmoy, M.R. Vincent, H. Andreas, Proc. Natl. Acad. Sci. 104, 1354 (2007)

    Article  Google Scholar 

  10. C. Chao, D. Marie-Christine, T.Q. Zachary, D. Mrinmoy, S. Barry, D.B. Valorie, R.C. Paul, M.R. Vincent, C.K. Cheng, D. Bogdan, Nano Lett. 6, 611 (2006)

    Article  ADS  Google Scholar 

  11. J.Y. Pil, T.N. Ki, Q. Jifa, L. Soo-Kwan, P. Juhyun, M.B. Angela, H.T. Paula, Nat. Mater. 5, 234 (2006)

    Article  Google Scholar 

  12. Y. Ibrahim, S. Sourabh, F.S. Nicole, Curr. Opin. Biotechnol. 22, 901 (2011)

    Article  Google Scholar 

  13. L. LiNa, G.H. Richard, R.B. Veronica, A.L. Steven, F. Stefan, J. Am. Chem. Soc. 128, 4502 (2006)

    Article  Google Scholar 

  14. Y. Mark, W. Debbie, U. Masaki, D. Trevor, Annu. Rev. Phytopathol. 46, 361 (2008)

    Article  Google Scholar 

  15. A.A. Elizabeth, I. Steven, S.P. David, Y.W. Edwin, W.C. James, K. Kent, Nano Lett. 6, 1160 (2006)

    Article  Google Scholar 

  16. L. Andrew, N. Zhongwei, W. Qian, Nano Res. 2, 349 (2009)

    Article  Google Scholar 

  17. E.F. Christine, L. Seung-Wuk, R.P. Beau, M.B. Angela, Acta Mater. 51, 5867 (2003)

    Article  Google Scholar 

  18. P.P. Dustin, E.P. Peter, D. Trevor, ACS Nano 6, 5000 (2012)

    Article  Google Scholar 

  19. F.D. Sikkema, M. Comellas-Aragones, R.G. Fokkink, B.J.M. Verduin, J.J.L.M. Cornelissen, Org. Biomol. Chem. 5, 54 (2007)

    Article  Google Scholar 

  20. C.B. Chang, C.M. Knobler, W.M. Gelbart, T.G. Mason, ACS Nano 2, 281 (2008)

    Article  Google Scholar 

  21. M.T. Klem, D. Willits, M. Young, T. Douglas, J. Am. Chem. Soc. 125, 10806 (2003)

    Article  Google Scholar 

  22. P.A. Suci, M.T. Klem, F.T. Arce, T. Douglas, M. Young, Langmuir 22, 8891 (2006)

    Article  Google Scholar 

  23. M. Comellas-Aragones, H. Engelkamp, V.I. Claessen, N.A.J.M. Sommerdijk, A.E. Rowan, Nat. Nanotechnol. 2, 635 (2007)

    Article  ADS  Google Scholar 

  24. E. Gillitzer, P. Suci, M. Young, T. Douglas, Small 2, 962 (2006)

    Article  Google Scholar 

  25. P.A. Suci, D.L. Berglund, L. Liepold, S. Brumfield, B. Pitts, Chem. Bio. 14, 387 (2007)

    Article  Google Scholar 

  26. P.A. Suci, Z. Varpness, E. Gillitzer, T. Douglas, M. Young, Langmuir 23, 12280 (2007)

    Article  Google Scholar 

  27. C.R. Kaiser, M.L. Flenniken, E. Gillitzer, A.L. Harmsen, A.G. Harmsen, Int. J. Nanomed. 2, 715 (2007)

    Google Scholar 

  28. Y. Ma, R.J.M. Nolte, J.J.L.M. Cornelissen, Adv. Drug Delivery Rev. 64, 811 (2012)

    Article  Google Scholar 

  29. G. Christoph, K. Venkatramanan, D. Markus, P. Christine, PloS one 8, e60582 (2013)

    Article  Google Scholar 

  30. J.P. Michel, I.L. Ivanovska, M.M. Gibbons, W.S. Klug, C.M. Knobler, G.J.L. Wuite, C.F. Schmidt, Proc. Natl. Acad. Sci. 103, 6184 (2006)

    Article  ADS  Google Scholar 

  31. A.J. Rader, D.H. Vlad, I. Bahar, Structure 13, 413 (2005)

    Article  Google Scholar 

  32. F. Tama, O. Miyashita, C.L. Brooks, 3rd J. Mol. Biol. 337, 985 (2004)

    Article  Google Scholar 

  33. R. Konecny, J. Trylska, F. Tama, D. Zhang, N.A. Baker, Biopolymers 82, 106 (2006)

    Article  Google Scholar 

  34. D. Zhang, R. Konecny, N.A. Baker, J.A. McCammon, Biopolymers 75, 325 (2004)

    Article  Google Scholar 

  35. A. Arkhipov, P.L. Freddolino, K. Schulten, Structure 14, 1767 (2006)

    Article  Google Scholar 

  36. A. Arkhipov, W.H Roos, G.J.L. Wuite, K. Schulten, Biophys. J. 97, 2061 (2009)

    Article  ADS  Google Scholar 

  37. C. Marek, O.R. Mark, J. Chem. Phys. 132, 015101 (2010)

    Article  Google Scholar 

  38. C. Marek, O.R. Mark, PloS one 8, e63640 (2013)

    Article  Google Scholar 

  39. M. Zink, H. Grubmüller, Biophys. J. 94, 1350 (2009)

    Article  Google Scholar 

  40. Z. Adam, A. Ryan, M. Jennifer, P.C. Johnson, J.Y. Mark, Virology 277, 450 (2000)

    Article  Google Scholar 

  41. E.B. Johanna, C.R.K. Heinrich, S.S. Ulrich, BMC Biophys. 5, 22 (2012)

    Article  Google Scholar 

  42. B. Tristan, G. Christoph, D. Markus, P. Christine, J. Chem. Theory Comput. 8, 3750 (2012)

    Article  Google Scholar 

  43. A.S. Jeffrey, B. Brian, Q. Chunxu, A.W. Deborah, J.Y. Mark, E.J. John, J. Virol. 80, 3582 (2006)

    Article  Google Scholar 

  44. J.A. Speir, S. Munshi, G. Wang, T.S. Baker, J.E. Johnson, Structure 3, 63 (1995)

    Article  Google Scholar 

  45. X. Zhao, J.M. Fox, N.H Olson, T.S. Baker, M.J. Young, Virology 205, 486 (1995)

    Article  Google Scholar 

  46. J. Tang, J.M. Johnson, K.A. Dryden, M.J. Young, A. Zlotnick, J. Struct. Biol. 154, 5967 (2006)

    Article  Google Scholar 

  47. R.F.K. Bruinsma, S. William, Annu. Rev. Condens. Matter Phys. 6, 245 (2015)

    Article  ADS  Google Scholar 

  48. J.D.H. Perlmutter, F. Michael, Annu. Rev. Phys. Chem. 66, 217 (2015)

    Article  ADS  Google Scholar 

  49. S.J. Marrink, HJ. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, J. Phys. Chem. B 111, 7812 (2007)

    Article  Google Scholar 

  50. L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, J. Chem. Theory Comput. 4, 819 (2008)

    Article  Google Scholar 

  51. X.C.M. Periole, SJ. Marrink, M.A. Ceruso, J. Chem. Theory Comput. 5, 2531 (2009)

    Article  Google Scholar 

  52. M. Seo, S. Rauscher, R. Pomes, D.P. Tieleman, J. Chem. Theory Comput. 8, 1774 (2012)

    Article  Google Scholar 

  53. B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)

    Article  Google Scholar 

  54. M. Baaden, S.J. Marrink, Curr. Opin. Struct. Biol. 23, 878 (2013)

    Article  Google Scholar 

  55. M. del Alamo, M.G. Mateu, J. Mol. Biol. 345, 893 (2005)

    Article  Google Scholar 

  56. D. Chandler, Nature 437, 640 (2005)

    Article  ADS  Google Scholar 

  57. W.K. Kegel, P. van der Schoot, Biophys. J. 91, 1501 (2006)

    Article  Google Scholar 

  58. W.H. Roos, M.M. Gibbons, A. Arkhipov, C. Uetrecht, N.R. Watts, P.T. Wingfield, A.C. Steven, A.J.R. Heck, K. Schulten, W.S. Klug, Biophys. J. 99, 1175 (2010)

    Article  ADS  Google Scholar 

  59. D. Law-Hine, A.K. Sahoo, V. Bailleux, M. Zeghal, S. Prevost, P.K. Maiti, S. Bressanelli, D. Constantin, G. Tresset, J. Phys. Chem. Lett. 6, 3471 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Deserno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamani, V., Globisch, C., Peter, C. et al. Breaking a virus: Identifying molecular level failure modes of a viral capsid by multiscale modeling. Eur. Phys. J. Spec. Top. 225, 1757–1774 (2016). https://doi.org/10.1140/epjst/e2016-60141-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60141-2

Navigation