Skip to main content

Advertisement

Log in

Nonlinear spring-less electromagnetic vibration energy harvesting system

  • Regular Article
  • Electromagnetic Energy Harvesting
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper deals with a description and modelling of a spring-less electromagnetic vibration energy harvesting system. The presented unique electromagnetic vibration energy harvester consists of a nonlinear resonance mechanism, magnetic circuit with a coil and an electronic load. The mechanical vibrations excite the nonlinear resonance mechanism and the relative movement of the magnetic circuit against fixed coil induces voltage due to Faraday’s Law. When the electronics is connected the current flows through the load and output power is harvested. There are several nonlinearities which affects operations of the presented electromagnetic energy harvesting system. The significant nonlinearity of the system is stiffness of the resonance mechanism and it causes extending of an operation bandwidth. The harvesting of electrical energy from mechanical vibrations provides electromagnetic damping feedbacks of the coil to moving magnetic circuit. The feedback depends on the current flow through the electronic load and coil. The using of modern power management circuit with optimal power point provides other nonlinear operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.A. Paradiso, T. Starner, IEEE Pervasive Comput. 4, 18 (2005)

    Article  Google Scholar 

  2. T. Becker, M. Kluge, J. Schalk, K. Tiplady, C. Paget, U. Hilleringmann, T. Otterpohl, IEEE Sens. J. 9 (2009)

  3. P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, Sensors Actuators A Phys. 110, 344 (2004)

    Article  Google Scholar 

  4. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)

    Article  Google Scholar 

  5. B.H. Calhoun, D.C. Daly, N. Verma, D.F. Finchelstein, D.D. Wentzloff, A. Wang, S.H. Cho, A.P. Chandrakasan, Ieee Trans. Comput. 54, 727 (2005)

    Article  Google Scholar 

  6. D.P. Arnold, IEEE Trans. Magn. 43, 3940 (2007)

    Article  ADS  Google Scholar 

  7. S. Priya, D.J. Inman (eds.), Energy Harvesting Technologies (Springer US, Boston, MA, 2009)

  8. L. Mateu, F. Moll, in VLSI Circuits Syst. II, Pts 1 2, edited by J.F. Lopez, F.V. Fernandez, J.M. Lopez-Villegas, J.M. de la Rosa (2005), p. 359

  9. Z. Hadas, C. Ondrusek, V. Singule, Microsyst. Technol. 16, 691 (2010)

    Article  Google Scholar 

  10. Cammarano, A. Gonzalez-Buelga, S. a Neild, S.G. Burrow, D.J. Inman, J. Phys. Conf. Ser. 476, 012071 (2013)

    Article  ADS  Google Scholar 

  11. L. Gammaitoni, I. Neri, H. Vocca, Appl. Phys. Lett. 94 (2009)

  12. T.-W. Ma, H. Zhang, N.-S. Xu, Mech. Syst. Signal Process. 28, 323 (2012)

    Article  ADS  Google Scholar 

  13. S.D. Nguyen, E. Halvorsen, J. Microelectromech. Syst. 20, 1225 (2011)

    Article  Google Scholar 

  14. E. Sardini, M. Serpelloni, Sensors Actuators, A Phys. 172, 475 (2011)

    Article  Google Scholar 

  15. S.W. Guan, X.B. Shan, T. Xie, R.J. Song, Z.L. Xu, Appl. Mech. Mater. 444–445, 879 (2013)

    Article  Google Scholar 

  16. S.G. Burrow, L.R. Clare, in Proc. IEEE Int. Electr. Mach. Drives Conf. IEMDC 2007 (2007), p. 715

  17. J. Yang, Y.M. Wen, P. Li, X.L. Bai, Sci. China Technol. Sci. 54, 1419 (2011)

    Article  Google Scholar 

  18. C.B. Williams, R.B. Yates, Sensors Actuators A Phys. 52, 8 (1996)

    Article  Google Scholar 

  19. S.P. Beeby, M.J. Tudor, N.M. White, Meas. Sci. Technol. 17, R175 (2006)

    Article  Google Scholar 

  20. T. von Büren, G. Tröster, Sensors Actuators A Phys. 135, 765 (2007)

    Article  Google Scholar 

  21. Y. Zhu, J.W. Zu, IEEE Trans. Magn. 48, 3344 (2012)

    Article  ADS  Google Scholar 

  22. C. Lee, D. Stamp, N.R. Kapania, J.O. Mur-Miranda, in Energy, edited by N.K. Dhar, P.S. Wijewarnasuriya, A.K. Dutta (SPIE, 2010), p. 76830Y–76830Y–12

  23. Z. Hadas, V. Singule, C. Ondrusek, Solid State Phenom. 164, 291 (2010)

    Article  Google Scholar 

  24. Z. Hadas, V. Vetiska, Z. Ancik, C. Ondrusek, V. Singule, Smart Sensors, Actuators, Mems IV 87631F (2013)

  25. Z. Hadas, V. Vetiska, R. Huzlik, V. Singule, Microsyst. Technol. 20, 831 (2014)

    Article  Google Scholar 

  26. Z. Hadas, J. Kurfurst, C. Ondrusek, V. Singule, Microsyst. Technol. 18, 1003 (2012)

    Article  Google Scholar 

  27. Z. Hadas, M. Kluge, V. Singule, C. Ondrusek, in 2007 IEEE Int. Symp. Diagnostics Electr. Mach. Power Electron. Drives (IEEE, 2007), p. 451

  28. Z. Hadas, V. Singule, C. Ondrusek, Solid State Phenom. 147–149, 426 (2009)

    Article  Google Scholar 

  29. Z. Hadas, R. Huzlik, in Mechatronics 2013 Recent Technol. Sci. Adv. (2014), p. 371

  30. D. Niyato, E. Hossain, M. Rashid, V. Bhargava, IEEE Wirel. Commun. 14, 90 (2007)

    Article  Google Scholar 

  31. E. Lefeuvre, D. Audigier, C. Richard, D. Guyomar, IEEE Trans. Power Electron. 22, 2018 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Hadas or C. Ondrusek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadas, Z., Ondrusek, C. Nonlinear spring-less electromagnetic vibration energy harvesting system. Eur. Phys. J. Spec. Top. 224, 2881–2896 (2015). https://doi.org/10.1140/epjst/e2015-02595-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02595-3

Keywords

Navigation