Skip to main content
Log in

Thermodynamic consistency and other challenges in coarse-graining models

  • Review
  • A. Representation of Molecular Systems Across Scales
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper presents a critical discussion of coarse-graining models of complex molecular liquids, starting from the Integral Equation Coarse-Graining method (IECG). For liquids of macro- molecules this method allows for the analytical solution of the coarse-graining formalism, including the effective pair potential, and providing in this way a convenient framework to study general issues concerning coarse-graining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ganguly, N.F.A. van der Vegt, J. Chem. Theory Comput. 9, 5247 (2013)

    Article  Google Scholar 

  2. W. Shinoda, R. Devane, M.L. Klein, Mol. Sim. 33, 27 (2007)

    Article  Google Scholar 

  3. J.F. Dama, A.V. Sinitskiy, M. McCullagh, J. Weare, B. Roux, A.R. Dinner, G.A. Voth, J. Chem. Theory Comput. 9, 2466 (2013)

    Article  Google Scholar 

  4. E. Brini, N.F.A. van der Vegt, J. Chem. Phys. 137, 154113 (2012)

    Article  ADS  Google Scholar 

  5. M.S. Shell, J. Chem. Phys. 129, 144108 (2008)

    Article  ADS  Google Scholar 

  6. E.J. Sambriski, M.G. Guenza, Phys. Rev. E 76, 051801 (2007)

    Article  ADS  Google Scholar 

  7. A.J. Clark, M.G. Guenza, J. Chem. Phys. 132, 044902 (2010)

    Article  ADS  Google Scholar 

  8. A.J. Clark, J. McCarty, M.G. Guenza, J. Chem. Phys. 139, 124906 (2013)

    Article  ADS  Google Scholar 

  9. J. McCarty, A. Clark, J. Copperman, M.G. Guenza, J. Chem. Phys. 140, 204913 (2014)

    Article  ADS  Google Scholar 

  10. A.J. Clark, J. McCarty, I.Y. Lyubimov, M.G. Guenza, Phys. Rev. Lett. 109, 168301 (2012)

    Article  ADS  Google Scholar 

  11. G. Yatsenko, E.J. Sambriski, M.A. Nemirovskaya, M. Guenza, Phys. Rev. Lett. 93, 257803 (2004)

    Article  ADS  Google Scholar 

  12. M. Praprotnik, L. Delle Site, in Biomolecular Simulations: Methods and Protocols, Vol. 924, edited by L. Monticelli,E. Salonen (Springer-Science, 2012), p. 567

  13. I.Y. Lyubimov, M.G. Guenza, J. Chem. Phys. 138, 12A546 (2013)

    Article  Google Scholar 

  14. I.Y. Lyubimov, J. McCarty, A. Clark, M.G. Guenza, J. Phys. Chem. 133, 094904 (2010)

    Article  Google Scholar 

  15. I.Y. Lyubimov, M.G. Guenza, Phys. Rev. E 84, 031801 (2011)

    Article  ADS  Google Scholar 

  16. S. Izvekov, G.A. Voth, J. Chem. Phys. 125, 151101 (2006)

    Article  ADS  Google Scholar 

  17. F. Muller-Plathe, Chem. Phys. Chem. 3, 754 (2002)

    Google Scholar 

  18. V. Harmandaris, K. Kremer Soft Matt. 5, 3920 (2009)

    Article  ADS  Google Scholar 

  19. M. Putz, J.G. Curro, G.S. Grest, J. Chem. Phys. 114, 2847 (2001)

    Article  ADS  Google Scholar 

  20. W. Tschop, K. Kremer, J. Batoulis, T. Burger, O. Hahn, Acta Polymerica 49, 61 (1999)

    Article  Google Scholar 

  21. S. Izvekov, G.A. Voth, J. Chem. Phys. 123, 134105 (2005)

    Article  ADS  Google Scholar 

  22. W.G. Noid, J.-W. Chu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, H.C. Andersen, J. Chem. Phys. 128, 244114 (2008)

    Article  ADS  Google Scholar 

  23. A. Narros, C.N. Likos, A.J. Moreno, B. Capone, Soft Matter 48, 9601 (2014)

    Article  ADS  Google Scholar 

  24. S.O. Nielsen, C.F. Lopez, G. Srinivas, M.L. Klein, J. Phys. Cond. Matt. 16, R481 (2004)

    Article  ADS  Google Scholar 

  25. S. Nawaz, P. Carbone J. Phys. Chem. B 118, 1648 (2014)

    Article  Google Scholar 

  26. V.A. Harmandaris, D. Reith, N.F.A. van der Vegt, K. Kremer, Macromol. Chem. Phys. 208, 2109 (2007)

    Article  Google Scholar 

  27. K. Johnston, V. Harmandaris, Macromol. 46, 5741 (2013)

    Article  ADS  Google Scholar 

  28. V. Ruhle, C. Junghans, A. Lukyanov, K. Kremer, D. Andrienko, J. Chem. Theo. Comp. 5, 3211 (2009)

    Article  Google Scholar 

  29. G. Yatsenko, E.J. Sambriski, M.G. Guenza, J. Chem. Phys. 122, 054907 (2005)

    Article  ADS  Google Scholar 

  30. E.J. Sambriski, G. Yatsenko, M.A. Nemirovskaya, M.G. Guenza, J. Chem. Phys. 125, 234902 (2006)

    Article  ADS  Google Scholar 

  31. J.-P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, New York, 1990)

  32. C.N. Likos, A. Lang, M. Watzlawek, H. Lowen, Phys. Rev. E 63, 031206 (2001)

    Article  ADS  Google Scholar 

  33. M. Doi, S.F. Edward, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)

  34. R.L. Henderson, Phys. Lett. A 49, 197 (1974)

    Article  ADS  Google Scholar 

  35. M.P. Allen, D.J. Tildesley, Computer Simulations of Liquids (Oxford Science Publications, Oxford, 1992)

  36. D.A. McQuarrie, Statistical Mechanics (University Science: Sausalito, CA, 2000)

  37. R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, New York, 2001)

  38. J. McCarty, I.Y. Lyubimov, M.G. Guenza, J. Phys. Chem. B 113, 11876 (2009)

    Article  Google Scholar 

  39. J. McCarty, M.G. Guenza, J. Chem. Phys. 113, 094904 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guenza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guenza, M. Thermodynamic consistency and other challenges in coarse-graining models. Eur. Phys. J. Spec. Top. 224, 2177–2191 (2015). https://doi.org/10.1140/epjst/e2015-02407-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2015-02407-x

Keywords

Navigation