Skip to main content
Log in

Laser acceleration in novel media

  • Regular Article
  • IZEST Science: Laser Driven Particle Acceleration
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

With newly available compact laser technology [1] we are capable of producing 100 PW-class laser pulses with a single-cycle duration on the femtosecond timescale. With this fs intense laser we can produce a coherent X-ray pulse that is also compressed, well into the hard X-ray regime (∼10 keV) and with a power up to as much as 10 Exawatts. We suggest utilizing these coherent X-rays to drive the acceleration of particles. Such X-rays are focusable far beyond the diffraction limit of the original laser wavelength and when injected into a crystal it forms a metallic-density electron plasma ideally suited for laser wakefield acceleration. If the X-ray field is limited by the Schwinger field at the focal size of ∼100 nm, the achievable energy is 1 PeV over 50 m. (If the X-rays are focused further, much higher energies beyond this are possible). These processes are not limited to only electron acceleration, and if ions are pre-accelerated to beyond GeV they are capable of being further accelerated using a LWFA scheme [2] to similar energies as electrons over the same distance-scales. Such high energy proton (and ion) beams can induce copious neutrons, which can also give rise to intense compact muon beams and neutrino beams that may be portable. High-energy gamma rays can also be efficiently emitted with a bril- liance many orders of magnitude above the brightest X-ray sources by this accelerating process, from both the betatron radiation as well as the dominant radiative-damping dynamics. With the exceptional conditions enabled by this technology we envision a whole scope of new physical phenomena, including: the possibility of laser self-focus in the vacuum, neutron manipulation by the beat of such lasers, zeptosecond spectroscopy of nuclei, etc. Further, we now introduce along with the idea of vacuum as a nonlinear medium, the Schwinger Fiber Accelerator. This is a self-organized vacuum fiber acceleration concept, in which the repeated process of self-focusing and defocusing for the X-ray pulse in vacuum forms a modulated fiber that guides the intense X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Mourou, S. Mirnov, E. Khazanov, A. Sergeev, Single Cycle Thin Film Compressor Opening the Door to Zeptosecond-Exawatt Physics, EPJ (submitted) (2014)

  2. T. Tajima, J.M. Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  3. M. Livingston, J. Blewett, Particle Accelerators (McGraw-Hill, New York, 1962)

  4. A. Chao, M. Tigner, Handbook of Accelerator Science and Technology (World Scientific, Singapore, 1999)

  5. D. Strickland, G. Mourou, Opt. Comm. 56, 219 (1985)

    Article  ADS  Google Scholar 

  6. E. Esarey, et al., Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  7. T. Tajima, Proc. Jpn. Acad. Ser. B 86, 147 (2010)

    Article  Google Scholar 

  8. N. Naumova, et al., PRL 93, 195003 (2004)

    Article  ADS  Google Scholar 

  9. K. Nakajima, et al., PR STAB 14, 091301 (2011)

    Google Scholar 

  10. A. Deng, et al., PR STAB 15, 081303 (2012)

    Google Scholar 

  11. B. Newberger, T. Tajima, F.R. Huson, W. Mackay, B.C. Covington, J.R. Payne, Z.G. Zou, N.K. Mahale, S. Ohnuma, Application of Novel Material in Crystal Accelerator Concepts, Proc. IEEE Part. Acc. (IEEE, Chicago, 1989), p. 630

  12. G. Mourou, et al., Rev. Mod. Phys. 78, 309 (2006)

    Article  ADS  Google Scholar 

  13. F.L. Zheng, H.Y. Wang, X.Q. Yan, J.E. Chen, Y.R. Lu, Z.Y. Guo, T. Tajima, X.T. He, Phys. Plasmas 19, 023111 (2012)

    Article  ADS  Google Scholar 

  14. F.L. Zheng, et al., Phys. Plasmas 20, 013107 (2013)

    Article  ADS  Google Scholar 

  15. T. Esirkepov, M. Borghesi, S.V. Bulanov, G. Mourou, T. Tajima, Phys. Rev. Lett. 92, 175003 (2004)

    Article  ADS  Google Scholar 

  16. F. Terranova, S. Bulanov, T. Esirkepov, P. Migliozzi, F. Pegoraro, T. Tajima, Nucl. Phys. B-Proc. Suppl. 143, 572 (2005)

    Article  ADS  Google Scholar 

  17. “Nuclear Physics and Gamma-ray Sources for Nuclear Security and Nonproliferation” (Tokai, Japan, 2014) www.jaea.go.jp/english/npnsnp/NPNSNP%20Program

  18. A. Zhidkov, et al., Phys. Rev. Lett. 88, 185002 (2002)

    Article  ADS  Google Scholar 

  19. J. Koga, S. Bulanov, T. Esirkepov, in Ultrafast Optics V (2007)

  20. A. Di Piazza, C. Mueller, K. Hatsagortsyan, C. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  21. S. Corde, et al., Rev. Mod. Phys. 85, 1 (2013)

    Article  ADS  Google Scholar 

  22. Y. Ma, L.M. Chen, M. Chen, W.C. Yan, D.Z. Li, K. Huang, Z.M. Sheng, K. Nakajima, T. Tajima, J. Zhang, Nature Photon. (submitted) (2014)

  23. T. Tajima, K. Soyama, J. Koga, H. Takuma, J. Phys. Soc. Jpn. 69, 3840 (2000)

    Article  ADS  Google Scholar 

  24. T. Tajima, Laser Part. Beams 3, 351 (1985)

    Article  ADS  Google Scholar 

  25. T. Tajima, M. Cavenago, Phys. Rev. Lett. 59, 1440 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajima, T. Laser acceleration in novel media. Eur. Phys. J. Spec. Top. 223, 1037–1044 (2014). https://doi.org/10.1140/epjst/e2014-02154-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02154-6

Keywords

Navigation