Skip to main content
Log in

Multi-chimera states in a higher order network of FitzHugh–Nagumo oscillators

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A chimera state represents a distinct configuration within interconnected oscillatory networks comprising both coherent and incoherent oscillators. In specific scenarios, multiple sets of synchronized systems can coexist, forming what is termed a multi-chimera state. This phenomenon has previously been documented in a network of FitzHugh–Nagumo systems under strong coupling conditions. In this study, we explore the impact of higher order interactions on the manifestation of multi-chimera states and their respective domains. The assessment involves utilizing measures of incoherence and discontinuity. The findings indicate that higher order networks are more prone to exhibiting multi-chimera states. Additionally, complete coherence is achieved with lower first-order coupling strength. Furthermore, the higher order network displays instances of imperfect chimera and imperfect synchronization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. S. Boccaletti, D.-U. Hwang, M. Chavez, A. Amann, J. Kurths, L.M. Pecora, Synchronization in dynamical networks: evolution along commutative graphs. Phys. Rev. E 74(1), 016102 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  2. Michael G. Rosenblum, Arkady S. Pikovsky, Jürgen. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)

    Article  ADS  CAS  Google Scholar 

  3. Michael G. Rosenblum, Arkady S. Pikovsky, Jürgen. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Antonio Pujol-Peré, Oscar Calvo, Manuel A. Matías, Jürgen. Kurths, Experimental study of imperfect phase synchronization in the forced Lorenz system. Chaos 13(1), 319–326 (2003)

    Article  ADS  Google Scholar 

  5. Arkady Pikovsky, Michael Rosenblum, Jürgen. Kurths, Robert C. Hilborn, Synchronization: a universal concept in nonlinear science. Am. J. Phys. 70(6), 655–655 (2002)

    Article  ADS  Google Scholar 

  6. Eckehard Schöll, Partial synchronization patterns in brain networks. Europhys. Lett. 136(1), 18001 (2022)

    Article  ADS  Google Scholar 

  7. Fatemeh Parastesh, Sajad Jafari, Hamed Azarnoush, Zahra Shahriari, Zhen Wang, Stefano Boccaletti, Matjaž Perc, Chimeras. Phys. Rep. 898, 1–114 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  8. Soumen Majhi, Bidesh K. Bera, Dibakar Ghosh, Matjaž Perc, Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 100–121 (2019)

    Article  ADS  PubMed  Google Scholar 

  9. Mahesh Wickramasinghe, István Z. Kiss, Spatially organized dynamical states in chemical oscillator networks: Synchronization, dynamical differentiation, and chimera patterns. PLoS One 8(11), e80586 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. K. Blaha, R.J. Burrus, J.L. Orozco-Mora, E. Ruiz-Beltrán, A.B. Siddique, V.D. Hatamipour, F. Sorrentino, Symmetry effects on naturally arising chimera states in mechanical oscillator networks. Chaos 26(11), 13 (2016)

    Article  Google Scholar 

  11. Changhai Tian, Liang Cao, Hongjie Bi, Xu. Kesheng, Zonghua Liu, Chimera states in neuronal networks with time delay and electromagnetic induction. Nonlinear Dyn. 93, 1695–1704 (2018)

    Article  Google Scholar 

  12. Sajedeh Aghababaei, Sundarambal Balaraman, Karthikeyan Rajagopal, Fatemeh Parastesh, Shirin Panahi, Sajad Jafari, Effects of autapse on the chimera state in a Hindmarsh–Rose neuronal network. Chaos Solitons Fractals 153, 111498 (2021)

    Article  MathSciNet  Google Scholar 

  13. Zahra Shahriari, Fatemeh Parastesh, Mahdi Jalili, Vesna Berec, Jun Ma, Sajad Jafari, The role of coupling factors on the emergence of synchronization and chimera patterns in network of non-locally coupled pancreatic \(\beta \)-cells. Europhys. Lett. 125(6), 60001 (2019)

    Article  ADS  CAS  Google Scholar 

  14. Zhen Wang, Sara Baruni, Fatemeh Parastesh, Sajad Jafari, Dibakar Ghosh, Matjaž Perc, Iqtadar Hussain, Chimeras in an adaptive neuronal network with burst-timing-dependent plasticity. Neurocomputing 406, 117–126 (2020)

    Article  Google Scholar 

  15. Tomasz Kapitaniak, Patrycja Kuzma, Jerzy Wojewoda, Krzysztof Czolczynski, Yuri Maistrenko, Imperfect chimera states for coupled pendula. Sci. Rep. 4(1), 6379 (2014)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Zhen Wang, Iqtadar Hussain, Viet-Thanh. Pham, Tomasz Kapitaniak, Discontinuous coupling and transition from synchronization to an intermittent transient chimera state. Sci. Iran. 28(4), 1661–1668 (2021)

    Google Scholar 

  17. Oleh Omel’chenko, Traveling chimera states. J. Phys. A Math. Theor. 52(10), 104001 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nefeli Dimitra Tsigkri-DeSmedt, Johanne Hizanidis, Philipp Hövel, Astero Provata, Multi-chimera states and transitions in the leaky integrate-and-fire model with nonlocal and hierarchical connectivity. Eur. Phys. J. Spec. Top. 225, 1149–1164 (2016)

    Article  Google Scholar 

  19. Nan Yao, Zi-Gang. Huang, Celso Grebogi, Ying-Cheng. Lai, Emergence of multicluster chimera states. Sci. Rep. 5(1), 12988 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Zakharova Anna, Kapeller Marie, Schöll Eckehard, Amplitude chimeras and chimera death in dynamical networks. J. Phys. Conf. Ser. 727(1), 012018 (2016)

    MathSciNet  Google Scholar 

  21. Fatemeh Parastesh, Sajad Jafari, Hamed Azarnoush, Boshra Hatef, Anastasios Bountis, Imperfect chimeras in a ring of four-dimensional simplified Lorenz systems. Chaos Solitons Fractals 110, 203–208 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. K. Sathiyadevi, V.K. Chandrasekar, D.V. Senthilkumar, M. Lakshmanan, Imperfect amplitude mediated chimera states in a nonlocally coupled network. Front. Appl. Math. Stat. 4, 58 (2018)

    Article  Google Scholar 

  23. P. Hövel, A. Vüllings, I. Omelchenko, J. Hizanidis. Chimera states in neuronal systems of excitability type-I. In: Proceedings of ECCS 2014: European Conference on Complex Systems, pp. 247–258. Springer, New York (2016)

  24. Iryna Omelchenko, Anna Zakharova, Philipp Hövel, Julien Siebert, Eckehard Schöll, Nonlinearity of local dynamics promotes multi-chimeras. Chaos 25(8), 18 (2015)

    Article  MathSciNet  Google Scholar 

  25. Stefano Boccaletti, C.I. del Pietro De Lellis, Karin Alfaro-Bittner. Genio, Regino Criado, Sarika Jalan, Miguel Romance, The structure and dynamics of networks with higher order interactions. Phys. Rep. 1018, 1–64 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  26. Federico Battiston, Enrico Amico, Alain Barrat, Ginestra Bianconi, Guilherme Ferraz, Benedetta de Arruda, Iacopo Iacopini Franceschiello, Sonia Kéfi, Vito Latora, Yamir Moreno et al., The physics of higher-order interactions in complex systems. Nat. Phys. 17(10), 1093–1098 (2021)

    Article  CAS  Google Scholar 

  27. Fatemeh Parastesh, Mahtab Mehrabbeik, Karthikeyan Rajagopal, Sajad Jafari, Matjaž Perc, Synchronization in Hindmarsh–Rose neurons subject to higher-order interactions. Chaos 32(1), 13 (2022)

    Article  MathSciNet  Google Scholar 

  28. Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz, Yamir de Arruda, Matjaž Perc. Moreno, Vito Latora, Evolutionary dynamics of higher-order interactions in social networks. Nat. Hum. Behav. 5(5), 586–595 (2021)

    Article  PubMed  Google Scholar 

  29. P.S. Skardal, A. Arenas, Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching. Commun. Phys. 3(1), 218 (2020)

    Article  Google Scholar 

  30. M.S. Anwar, D. Ghosh, Neuronal synchronization in time-varying higher-order networks. Chaos 33(7), 7 (2023)

    Article  MathSciNet  Google Scholar 

  31. Luca Gallo, Riccardo Muolo, Lucia Valentina Gambuzza, Vito Latora, Mattia Frasca, Timoteo Carletti, Synchronization induced by directed higher-order interactions. Commun. Phys. 5(1), 263 (2022)

    Article  Google Scholar 

  32. Xu. Quan, Yiteng Wang, Wu. Huagan, Mo. Chen, Bei Chen, Periodic and chaotic spiking behaviors in a simplified memristive Hodgkin–Huxley circuit. Chaos Solitons Fractals 179, 114458 (2024)

    Article  MathSciNet  Google Scholar 

  33. Xiongjian Chen, Ning Wang, Yiteng Wang, Wu. Huagan, Xu. Quan, Memristor initial-offset boosting and its bifurcation mechanism in a memristive Fitzhugh–Nagumo neuron model with hidden dynamics. Chaos Solitons Fractals 174, 113836 (2023)

    Article  MathSciNet  Google Scholar 

  34. Xu. Quan, Yiteng Wang, Bei Chen, Ze. Li, Ning Wang, Firing pattern in a memristive Hodgkin–Huxley circuit: numerical simulation and analog circuit validation. Chaos Solitons Fractals 172, 113627 (2023)

    Article  MathSciNet  Google Scholar 

  35. Xu. Quan, Xiongjian Chen, Bei Chen, Wu. Huagan, Ze. Li, Han Bao, Dynamical analysis of an improved Fitzhuh–Nagumo neuron model with multiplier-free implementation. Nonlinear Dyn. 111(9), 8737–8749 (2023)

    Article  Google Scholar 

  36. I. Omelchenko, E. Omel’chenko, P. Hövel, E. Schöll, When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys. Rev. Lett. 110(22), 224101 (2013)

    Article  ADS  PubMed  Google Scholar 

  37. Peter Van Heijster, Björn. Sandstede, Planar radial spots in a three-component Fitzhugh–Nagumo system. J. Nonlinear Sci. 21, 705–745 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zhen Wang, Peijun Zhang, Irene Moroz, Anitha Karthikeyan, Complex dynamics of a Fitzhugh–Rinzel neuron model considering the effect of electromagnetic induction. Sci. Iran. 28(3), 1685–1697 (2021)

    Google Scholar 

  39. Iryna Omelchenko, Astero Provata, Johanne Hizanidis, Eckehard Schöll, Philipp Hövel, Robustness of chimera states for coupled Fitzhugh–Nagumo oscillators. Phys. Rev. E 91(2), 022917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. R. Gopal, V.K. Chandrasekar, A. Venkatesan, M. Lakshmanan, Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling. Phys. Rev. E 89(5), 052914 (2014)

    Article  ADS  CAS  Google Scholar 

  41. Bidesh K. Bera, Dibakar Ghosh, M. Lakshmanan, Chimera states in bursting neurons. Phys. Rev. E 93(1), 012205 (2016)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  42. Sarbendu Rakshit, Bidesh K. Bera, Matjaž Perc, Dibakar Ghosh, Basin stability for chimera states. Sci. Rep. 7(1), 2412 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (22278338, 12172281), the Natural Science Basic Research Program of Shaanxi (2021JM-533), the Fund of the Science and Technology Innovation Team of Shaanxi (2022TD-61), the Support Plan for Sanqin Scholars Innovation Team in Shaanxi Province of China, the Fund of the Youth Innovation Team of Shaanxi Universities, and the Scientific Research Foundation of Xijing University (XJ21B01). The authors also express their gratitude to the reviewers for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Chen, M., Xi, X. et al. Multi-chimera states in a higher order network of FitzHugh–Nagumo oscillators. Eur. Phys. J. Spec. Top. (2024). https://doi.org/10.1140/epjs/s11734-024-01143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-024-01143-0

Navigation