Skip to main content
Log in

Plasma mirrors as a path to the Schwinger limit: theoretical and numerical developments

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Following the advent of petawatt (PW)-class lasers already capable of achieving light intensities of \(10^{23}\) W/cm\(^2\), high-field science now aims at solving a major challenge of modern physics: can we produce extreme light intensities above \(10^{25}\) W/cm\(^2\) beyond which yet unexplored strong-field quantum electrodynamics (SF-QED) regimes would dominate light–matter or even light–quantum vacuum interactions? As the required intensities are orders of magnitude higher than the present record held by a 4 PW laser, solving this major question with the current generation of lasers requires conceptual breakthroughs that we strived to address at CEA-LIDYL over the last 5 years. To break this barrier, we proposed to revive an old concept called the ‘Curved Relativistic Mirror’ (CRM). Assuming a perfectly reflective and aberration-free CRM, reflecting a high-power laser on such a moving mirror could in principle boost its intensities by several orders of magnitude through Doppler effect. The major obstacle with this simple concept is its actual implementation: how to produce a curved and highly reflective relativistic mirror of excellent optical quality in experiments? This has remained an open question so far, which has resisted all experimental attempts. In this article, we present the theoretical and numerical efforts that we have carried out to answer this question, starting from the development of the 3D kinetic code WarpX-PICSAR in strong collaboration with the team of Dr. Jean-Luc Vay at Berkeley Lab, up to the very first numerical experiments of CRM designs performed with the code at very large scale. Leveraging on these first results, we show that high-power PW lasers, boosted by a relativistic plasma mirror, can increase SF-QED signatures by orders of magnitude, potentially giving access to new physics at existing laser facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Taken from ref [47]

Fig. 8

Taken from ref. [44]

Fig. 9

Taken from ref. [46]

Fig. 10

Taken from ref. [47]

Fig. 11

Taken from ref. [47]

Fig. 12

Taken from ref. [47]

Fig. 13

Taken from ref. [47]

Fig. 14

Taken from ref. [51]

Fig. 15

Taken from ref. [51]

Fig. 16

Taken from ref. [51]

Fig. 17

Taken from ref. [51]

Fig. 18

Taken from ref. [29]

Fig. 19

Taken from ref. [57]

Fig. 20
Fig. 21
Fig. 22
Fig. 23

Taken from ref. [188]

Similar content being viewed by others

Notes

  1. Ion–ion collisions occur on a much larger time scale and can be neglected as well.

References

  1. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 56(3), 219–221 (1985)

    ADS  Google Scholar 

  2. Engineering National Academies of Sciences. Opportunities in Intense Ultrafast Lasers: Reaching for the Brightest Light (2017)

  3. G.A. Mourou, T. Tajima, S.V. Bulanov, Optics in the relativistic regime. Rev. Mod. Phys. 78(2), 309–371 (2006)

    ADS  Google Scholar 

  4. E. Esarey, C.B. Schroeder, W.P. Leemans, Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81(3), 1229–1285 (2009). (Publisher: American Physical Society)

    ADS  Google Scholar 

  5. M. Thévenet, H. Vincenti, J. Faure, On the physics of electron ejection from laser-irradiated overdense plasmas. Phys. Plasmas 23(6), 063119 (2016)

    ADS  Google Scholar 

  6. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85(1), 1–48 (2013). (Publisher: American Physical Society)

    ADS  Google Scholar 

  7. J.A. Wheeler, A. Borot, S. Monchocé, H. Vincenti, A. Ricci, A. Malvache, R. Lopez-Martens, F. Quéré, Attosecond lighthouses from plasma mirrors. Nat. Photon. 6(12), 829–833 (2012)

    ADS  Google Scholar 

  8. L. Chopineau, A. Denoeud, A. Leblanc, E. Porat, P. Martin, H. Vincenti, F. Quéré, Spatio-temporal characterization of attosecond pulses from plasma mirrors. Nat. Phys. 17(8), 968–973 (2021)

    Google Scholar 

  9. M. Marklund, P.K. Shukla, Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78(2), 591–640 (2006)

    ADS  Google Scholar 

  10. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84(3), 1177–1228 (2012)

    ADS  Google Scholar 

  11. J. Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73(4), 416–417 (1948). (Publisher: American Physical Society)

    ADS  MATH  Google Scholar 

  12. D. Hanneke, S. Fogwell, G. Gabrielse, New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100(12), 120801 (2008). (Publisher: American Physical Society)

    ADS  Google Scholar 

  13. V.I. Ritus, Radiative corrections in quantum electrodynamics with intense field and their analytical properties. Ann. Phys. 69(2), 555–582 (1972)

    ADS  Google Scholar 

  14. V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, vol. 4 (Butterworth-Heinemann, Oxford, 1982). (Google-Books-ID: URL5NKX8vbAC)

    Google Scholar 

  15. F. Sauter, Über das verhalten eines elektrons im homogenen elektrischen feld nach der relativistischen theorie diracs. Z. Phys. 69(11), 742–764 (1931)

    ADS  MATH  Google Scholar 

  16. W. Heisenberg, H. Euler, Folgerungen aus der diracschen theorie des positrons. Z. Phys. 98(11), 714–732 (1936)

    ADS  MATH  Google Scholar 

  17. J. Schwinger, On Gauge invariance and vacuum polarization. Phys. Rev. 82(5), 664–679 (1951)

    ADS  MathSciNet  MATH  Google Scholar 

  18. A.R. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101(20), 200403 (2008)

    ADS  Google Scholar 

  19. J. Esberg, U.-I. Uggerhøj, B. Dalena, D. Schulte, Strong field processes in beam-beam interactions at the Compact Linear Collider. Phys. Rev. Spec. Top. Accel. Beams 17(5), 051003 (2014). (Publisher: American Physical Society)

    ADS  Google Scholar 

  20. J.T. Mendonça, Axion excitation by intense laser fields. Europhys. Lett. (EPL) 79(2), 21001 (2007). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  21. S. Evans, J. Rafelski, Virtual axion-like particle Complement to Euler-Heisenberg-Schwinger action. Phys. Lett. B 791, 331–334 (2019)

    ADS  MathSciNet  Google Scholar 

  22. H. Gies, J. Jaeckel, A. Ringwald, Polarized light propagating in a magnetic field as a probe for millicharged fermions. Phys. Rev. Lett. 97(14), 140402 (2006). (Publisher: American Physical Society)

    ADS  Google Scholar 

  23. R. Ruffini, J.D. Salmonson, J.R. Wilson, S.-S. Xue, On the pair-electromagnetic pulse from an electromagnetic Black Hole surrounded by a Baryonic Remnant (2000). arXiv:astro-ph/0004257

  24. D.A. Uzdensky, S. Rightley, Plasma physics of extreme astrophysical environments. Rep. Prog. Phys. 77(3), 036902 (2014). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  25. J.W. Yoon, C. Jeon, J. Shin, S.K. Lee, H.W. Lee, I.W. Choi, H.T. Kim, J.H. Sung, C.H. Nam, Achieving the laser intensity of \(5.5\times 10^{\rm 22}\)\(\text{W/cm}^{\rm 2}\) with a wavefront-corrected multi-PW laser. Opt. Express 27(15), 20412–20420 (2019)

  26. A. Einstein, Zur Elektrodynamik bewegter Körper. Ann. Phys. 322(10), 891–921 (1905)

    MATH  Google Scholar 

  27. K. Landecker, Possibility of frequency multiplication and wave amplification by means of some relativistic effects. Phys. Rev. 86(6), 852–855 (1952)

    ADS  Google Scholar 

  28. S.V. Bulanov, T. Esirkepov, T. Tajima, Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91(8), 085001 (2003). (Publisher: American Physical Society)

    ADS  Google Scholar 

  29. F. Quéré, H. Vincenti, Reflecting petawatt lasers off relativistic plasma mirrors: a realistic path to the Schwinger limit. High Power Laser Sci. Eng. 9, e6 (2021). (Publisher: Cambridge University Press)

    Google Scholar 

  30. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J.C. Gauthier, J.-P. Geindre, T. Wittmann, Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses. Phys. Rev. E 69(2), 026402 (2004)

    ADS  Google Scholar 

  31. H.C. Kapteyn, M.M. Murnane, A. Szoke, R.W. Falcone, Prepulse energy suppression for high-energy ultrashort pulses using self-induced plasma shuttering. Opt. Lett. 16(7), 490–492 (1991)

    ADS  Google Scholar 

  32. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov, Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3(9), 3425–3437 (1996)

    ADS  Google Scholar 

  33. T. Baeva, S. Gordienko, A. Pukhov, Relativistic plasma control for single attosecond x-ray burst generation. Phys. Rev. E 74(6), 065401 (2006)

    ADS  Google Scholar 

  34. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Relativistic Doppler effect: universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93(11), 115002 (2004)

    ADS  Google Scholar 

  35. D. Brügge, A. Pukhov, Enhanced relativistic harmonics by electron nanobunching. Phys. Plasmas 17(3), 033110 (2010)

    ADS  Google Scholar 

  36. A.A. Gonoskov, A.V. Korzhimanov, A.V. Kim, M. Marklund, A.M. Sergeev, Ultrarelativistic nanoplasmonics as a route towards extreme-intensity attosecond pulses. Phys. Rev. E 84(4), 046403 (2011)

    ADS  Google Scholar 

  37. C. Thaury, F. Quéré, High-order harmonic and attosecond pulse generation on plasma mirrors: basic mechanisms. J. Phys. B: At. Mol. Opt. Phys. 43(21), 213001 (2010)

    ADS  Google Scholar 

  38. B. Dromey, M. Zepf, A. Gopal, K. Lancaster, M.S. Wei, K. Krushelnick, M. Tatarakis, N. Vakakis, S. Moustaizis, R. Kodama, M. Tampo, C. Stoeckl, R. Clarke, H. Habara, D. Neely, S. Karsch, P. Norreys, High harmonic generation in the relativistic limit. Nat. Phys. 2(7), 456 (2006)

    Google Scholar 

  39. B. Dromey, S. Kar, C. Bellei, D.C. Carroll, R.J. Clarke, J.S. Green, S. Kneip, K. Markey, S.R. Nagel, P.T. Simpson, L. Willingale, P. McKenna, D. Neely, Z. Najmudin, K. Krushelnick, P.A. Norreys, M. Zepf, Bright Multi-keV harmonic generation from relativistically oscillating plasma surfaces. Phys. Rev. Lett. 99(8), 085001 (2007)

    ADS  Google Scholar 

  40. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, P. Martin, Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3(6), 424–429 (2007)

    Google Scholar 

  41. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, 2021), p.8

    MATH  Google Scholar 

  42. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, 2004). (Google-Books-ID: S2lqgDTm6a4C)

    Google Scholar 

  43. G. Blaclard, H. Vincenti, R. Lehe, J.L. Vay, Pseudospectral Maxwell solvers for an accurate modeling of Doppler harmonic generation on plasma mirrors with particle-in-cell codes. Phys. Rev. E 96(3), 033305 (2017). (Publisher: American Physical Society)

    ADS  Google Scholar 

  44. H. Vincenti, J.-L. Vay, Ultrahigh-order Maxwell solver with extreme scalability for electromagnetic PIC simulations of plasmas. Comput. Phys. Commun. 228, 22–29 (2018)

    ADS  Google Scholar 

  45. J.-L. Vay, I. Haber, B.B. Godfrey, A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243, 260–268 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  46. H. Vincenti, J.L. Vay, Detailed analysis of the effects of stencil spatial variations with arbitrary high-order finite-difference Maxwell solver. Comput. Phys. Commun. 200, 147–167 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  47. H. Kallala, J.-L. Vay, H. Vincenti, A generalized massively parallel ultra-high order FFT-based Maxwell solver. Comput. Phys. Commun. 244, 25–34 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  48. H. Vincenti. https://picsar.net. Library Catalog: picsar.net

  49. A. Leblanc, S. Monchocé, H. Vincenti, S. Kahaly, J.-L. Vay, F. Quéré, Spatial properties of high-order harmonic beams from plasma mirrors: a ptychographic study. Phys. Rev. Lett. 119(15), 155001 (2017)

    ADS  Google Scholar 

  50. H. Vincenti, M. Lobet, R. Lehe, R. Sasanka, J.L. Vay, An efficient and portable SIMD algorithm for charge/current deposition in Particle-In-Cell codes. Comput. Phys. Commun. 210, 145–154 (2017)

    ADS  MATH  Google Scholar 

  51. H. Vincenti et al., PIC Codes on the Road to Exascale Architectures (Chapman and Hall/CRC, Boca Raton, 2017), pp.375–408. (Publication Title: Exascale Scientific Applications)

    MATH  Google Scholar 

  52. http://warp.lbl.gov/

  53. https://github.com/ecp-warpx/warpx

  54. L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet, S. Jaure, A. Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim, W. Zhang, J.-L. Vay, H. Vincenti, Pushing the frontier in the design of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations on exascale-class supercomputers, in SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC) (Dallas, TX, 2022), pp. 25–36. ISSN:2167-4337. https://doi.org/10.1109/SC41404.2022.00008

  55. B. Dromey, D. Adams, R. Hörlein, Y. Nomura, S.G. Rykovanov, D.C. Carroll, P.S. Foster, S. Kar, K. Markey, P. McKenna, D. Neely, M. Geissler, G.D. Tsakiris, M. Zepf, Diffraction-limited performance and focusing of high harmonics from relativistic plasmas. Nat. Phys. 5(2), 146–152 (2009)

    Google Scholar 

  56. H. Vincenti, S. Monchocé, S. Kahaly, G. Bonnaud, P. Martin, F. Quéré, Optical properties of relativistic plasma mirrors. Nat. Commun. 5, 3403 (2014)

    ADS  Google Scholar 

  57. H. Vincenti, Achieving extreme light intensities using optically curved relativistic plasma mirrors. Phys. Rev. Lett. 123(10), 105001 (2019)

    ADS  Google Scholar 

  58. A. Einstein, Zur quantentheorie der strahlung. Phys. Z. 18, 124 (1917)

    Google Scholar 

  59. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187(4736), 493–494 (1960). (Number: 4736 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  60. F.J. McClung, R.W. Hellwarth, Giant optical pulsations from ruby. J. Appl. Phys. 33(3), 828–829 (1962). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  61. W.E. Lamb, Theory of an optical maser. Phys. Rev. 134(6A), A1429–A1450 (1964). (Publisher: American Physical Society)

    ADS  Google Scholar 

  62. L.E. Hargrove, R.L. Fork, M.A. Pollack, Locking of He-Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5(1), 4–5 (1964). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  63. E. Ippen, C. Shank, A. Dienes, Passive mode locking of the cw dye laser. Appl. Phys. Lett. 21(8), 348–350 (1972). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  64. A. Douhal, F. Lahmani, A.H. Zewail, Proton-transfer reaction dynamics. Chem. Phys. 207(2), 477–498 (1996)

    Google Scholar 

  65. A.H. Zewail, Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104(24), 5660–5694 (2000). (Publisher: American Chemical Society)

    Google Scholar 

  66. S.K. Pal, A.H. Zewail, Dynamics of water in biological recognition. Chem. Rev. 104(4), 2099–2124 (2004). (Publisher: American Chemical Society)

    Google Scholar 

  67. K. Ta Phuoc, S. Corde, C. Thaury, V. Malka, A. Tafzi, J.P. Goddet, R.C. Shah, S. Sebban, A. Rousse, All-optical Compton gamma-ray source. Nat. Photon. 6(5), 308–311 (2012). (Number: 5 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  68. V. Malka, J. Faure, Y.A. Gauduel, E. Lefebvre, A. Rousse, K.T. Phuoc, Principles and applications of compact laser-plasma accelerators. Nat. Phys. 4(6), 447–453 (2008). (Number: 6 Publisher: Nature Publishing Group)

    Google Scholar 

  69. A.-J. Gonsalves, K. Nakamura, J. Daniels, C. Benedetti, C. Pieronek, T.-C.-H. de Raadt, S. Steinke, J.-H. Bin, S.-S. Bulanov, J. van Tilborg, C.-G.-R. Geddes, C.-B. Schroeder, C. Tóth, E. Esarey, K. Swanson, L. Fan-Chiang, G. Bagdasarov, N. Bobrova, V. Gasilov, G. Korn, P. Sasorov, W.-P. Leemans, Petawatt laser guiding and electron beam acceleration to 8 gev in a laser-heated capillary discharge waveguide. Phys. Rev. Lett. 122(8), 084801 (2019). (Publisher: American Physical Society)

    ADS  Google Scholar 

  70. W. Leemans, E. Esarey, Laser-driven plasma-wave electron accelerators. Phys. Today 62(3), 44 (2009). (Publisher: American Institute of PhysicsAIP)

    Google Scholar 

  71. S. Steinke, J. van Tilborg, C. Benedetti, C.G.R. Geddes, C.B. Schroeder, J. Daniels, K.K. Swanson, A.J. Gonsalves, K. Nakamura, N.H. Matlis, B.H. Shaw, E. Esarey, W.P. Leemans, Multistage coupling of independent laser-plasma accelerators. Nature 530(7589), 190–193 (2016). (Number: 7589 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  72. A.R. Maier, N.M. Delbos, T. Eichner, L. Hübner, S. Jalas, L. Jeppe, S.W. Jolly, M. Kirchen, V. Leroux, P. Messner, M. Schnepp, M. Trunk, P.A. Walker, C. Werle, P. Winkler, Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X 10(3), 031039 (2020). (Publisher: American Physical Society)

    Google Scholar 

  73. D. Guénot, D. Gustas, A. Vernier, B. Beaurepaire, F. Böhle, M. Bocoum, M. Lozano, A. Jullien, R. Lopez-Martens, A. Lifschitz, J. Faure, Relativistic electron beams driven by kHz single-cycle light pulses. Nat. Photon. 11(5), 293–296 (2017). (Number: 5 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  74. X. Wang, R. Zgadzaj, N. Fazel, S.A. Zhengyan Li, X.Z. Yi, Y.-Y. Watson Henderson, R. Chang, H.-E. Korzekwa, C.-H. Tsai, H. Pai, G. Quevedo, E. Dyer, M. Gaul, A.C. Martinez, T. Bernstein, M. Borger, M. Spinks, V. Donovan, G. Khudik, T.D. Shvets, M.C. Downer, Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun. 4(1), 1988 (2013). (Number: 1 Publisher: Nature Publishing Group)

  75. H.T. Kim, K.H. Pae, H.J. Cha, I. Jong Kim, Y. TaeJun, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-gev regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111(16), 165002 (2013). (Publisher: American Physical Society)

    ADS  Google Scholar 

  76. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, C. Tóth, J. Daniels, D.E. Mittelberger, S.S. Bulanov, J.-L. Vay, C.G.R. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113(24), 245002 (2014). (Publisher: American Physical Society)

    ADS  Google Scholar 

  77. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, V. Malka, Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature 444(7120), 737–739 (2006). (Number: 7120 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  78. C. McGuffey, A.G.R. Thomas, W. Schumaker, T. Matsuoka, V. Chvykov, F.J. Dollar, G. Kalintchenko, V. Yanovsky, A. Maksimchuk, K. Krushelnick, V.Y. Bychenkov, I.V. Glazyrin, A.V. Karpeev, Ionization induced trapping in a laser wakefield accelerator. Phys. Rev. Lett. 104(2), 025004 (2010). (Publisher: American Physical Society)

    ADS  Google Scholar 

  79. A. Pak, K.A. Marsh, S.F. Martins, W. Lu, W.B. Mori, C. Joshi, Injection and trapping of tunnel-ionized electrons into laser-produced wakes. Phys. Rev. Lett. 104(2), 025003 (2010). (Publisher: American Physical Society)

    ADS  Google Scholar 

  80. C.E. Clayton, J.E. Ralph, F. Albert, R.A. Fonseca, S.H. Glenzer, C. Joshi, W. Lu, K.A. Marsh, S.F. Martins, W.B. Mori, A. Pak, F.S. Tsung, B.B. Pollock, J.S. Ross, L.O. Silva, D.H. Froula, Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. Phys. Rev. Lett. 105(10), 105003 (2010). (Publisher: American Physical Society)

    ADS  Google Scholar 

  81. C.G.R. Geddes, K. Nakamura, G.R. Plateau, C. Toth, E. Cormier-Michel, E. Esarey, C.B. Schroeder, J.R. Cary, W.P. Leemans, Plasma-density-gradient injection of low absolute-momentum-spread electron bunches. Phys. Rev. Lett. 100(21), 215004 (2008). (Publisher: American Physical SocietyWP Leemans)

    ADS  Google Scholar 

  82. J. Faure, C. Rechatin, O. Lundh, L. Ammoura, V. Malka, Injection and acceleration of quasimonoenergetic relativistic electron beams using density gradients at the edges of a plasma channel. Phys. Plasmas 17(8), 083107 (2010). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  83. P. Brijesh, C. Thaury, K.T. Phuoc, S. Corde, G. Lambert, V. Malka, S.P.D. Mangles, M. Bloom, S. Kneip, Tuning the electron energy by controlling the density perturbation position in laser plasma accelerators. Phys. Plasmas 19(6), 063104 (2012). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  84. J.P. Couperus, R. Pausch, A. Köhler, O. Zarini, J.M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm, A. Irman, Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nat. Commun. 8(1), 487 (2017). (Number: 1 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  85. W. Lu, M. Tzoufras, C. Joshi, F.S. Tsung, W.B. Mori, J. Vieira, R.A. Fonseca, L.O. Silva, Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. Spec. Top. Accel. Beams 10(6), 061301 (2007). (Publisher: American Physical Society)

    ADS  Google Scholar 

  86. B. Cros, B.S. Paradkar, X. Davoine, A. Chancé, F.G. Desforges, S. Dobosz-Dufrénoy, N. Delerue, J. Ju, T.L. Audet, G. Maynard, M. Lobet, L. Gremillet, P. Mora, J. Schwindling, O. Delferrière, C. Bruni, C. Rimbault, T. Vinatier, A. Di Piazza, M. Grech, C. Riconda, J.R. Marquès, A. Beck, A. Specka, P. Martin, P. Monot, D. Normand, F. Mathieu, P. Audebert, F. Amiranoff, Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX. Nucl. Instrum. Methods Phys. Res., Sect. A 740, 27–33 (2014)

  87. S. Kahaly, S. Monchocé, H. Vincenti, T. Dzelzainis, B. Dromey, M. Zepf, P. Martin, F. Quéré, Direct observation of density-gradient effects in harmonic generation from plasma mirrors. Phys. Rev. Lett. 110(17), 175001 (2013)

    ADS  Google Scholar 

  88. L. Chopineau, A. Leblanc, G. Blaclard, A. Denoeud, M. Thévenet, J.-L. Vay, G. Bonnaud, P. Martin, H. Vincenti, F. Quéré, Identification of coupling mechanisms between ultraintense laser light and dense plasmas. Phys. Rev. X 9(1), 011050 (2019). (Publisher: American Physical Society)

    Google Scholar 

  89. M. Thévenet, A. Leblanc, S. Kahaly, H. Vincenti, A. Vernier, F. Quéré, J. Faure, Vacuum laser acceleration of relativistic electrons using plasma mirror injectors. Nat. Phys. 12(4), 355–360 (2016)

    Google Scholar 

  90. N. Zaïm, D. Guénot, L. Chopineau, A. Denoeud, O. Lundh, H. Vincenti, F. Quéré, J. Faure, Interaction of ultraintense radially-polarized laser pulses with plasma mirrors. Phys. Rev. X 10(4), 041064 (2020). (Publisher: American Physical Society)

    Google Scholar 

  91. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74(4), 046404 (2006)

    ADS  Google Scholar 

  92. A. Debayle, J. Sanz, L. Gremillet, Self-consistent theory of high-order harmonic generation by relativistic plasma mirror. Phys. Rev. E 92(5), 053108 (2015)

    ADS  Google Scholar 

  93. M. Cherednychek, A. Pukhov, Analytical approach to high harmonics spectrum in the nanobunching regime. Phys. Plasmas 23(10), 103301 (2016)

    ADS  Google Scholar 

  94. B. Svedung Wettervik, M. Marklund, A. Gonoskov, Physics of the laser-plasma interface in the relativistic regime of interaction. Phys. Plasmas 26(5), 053101 (2019). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  95. W. Kruer, The Physics Of Laser Plasma Interactions (Avalon Publishing, New York, 1988). (Google-Books-ID: csDvAAAAMAAJ)

    Google Scholar 

  96. P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction (Imperial College Press, London, 2005)

    MATH  Google Scholar 

  97. L. Gremillet, G. Bonnaud, F. Amiranoff, Filamented transport of laser-generated relativistic electrons penetrating a solid target. Phys. Plasmas 9(3), 941 (2002). (Publisher: American Institute of PhysicsAIP)

    ADS  Google Scholar 

  98. G. Moliere, Theorie der Streuung schneller geladener Teilchen I. Einzelstreuung am abgeschirmten Coulomb-Feld. Z. Naturforschung A 2(3), 133–145 (1947). (Publisher: Verlag der Zeitschrift für Naturforschung Section: Zeitschrift für Naturforschung A)

    ADS  MATH  Google Scholar 

  99. B.P. Nigam, M.K. Sundaresan, W. Ta-You, Theory of Multiple Scattering: Second Born Approximation and Corrections to Molière’s Work. Phys. Rev. 115(3), 491–502 (1959). (Publisher: American Physical Society)

    ADS  MathSciNet  MATH  Google Scholar 

  100. F. Pérez, Étude du transport des électrons suprathermiques en milieu solide ou comprimé dans le cadre de l’allumeur rapide. phdthesis, Ecole Polytechnique X (2010)

  101. M. PierreBertrand, T.R. Albrecht-Marc, A. Ghizzo, Vlasov models for laser–plasma interaction. Transp. Theory Stat. Phys. 34(1–2), 103–126 (2005). https://doi.org/10.1080/00411450500255310. (Publisher: Taylor & Francis)

    Article  ADS  MATH  Google Scholar 

  102. B.J. Winjum, J. Tu, S. Su, V. Decyk, W. Mori. Verification and convergence properties of a particle-in-cell code (2012)

  103. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controll. Fusion 57(11), 113001 (2015)

    ADS  Google Scholar 

  104. T. Aoyama, T. Kinoshita, M. Nio, Revised and improved value of the QED tenth-order electron anomalous magnetic moment. Phys. Rev. D 97(3), 036001 (2018). (Publisher: American Physical Society)

    ADS  Google Scholar 

  105. S. Alighanbari, G.S. Giri, F.L. Constantin, V.I. Korobov, S. Schiller, Precise test of quantum electrodynamics and determination of fundamental constants with HD + ions. Nature 581(7807), 152–158 (2020). (Number: 7807 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  106. J. Reinhardt, W. Greiner, Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40(3), 219 (1977). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  107. V.N. Baier, V.M. Katkov, V.M. Strakhovenko, Electromagnetic Processes at High Energies in Oriented Single Crystals (World Scientific, Singapore, 1998)

    Google Scholar 

  108. T. Erber, High-energy electromagnetic conversion processes in intense magnetic fields. Rev. Mod. Phys. 38(4), 626–659 (1966)

    ADS  MathSciNet  Google Scholar 

  109. G. Breit, J.A. Wheeler, Collision of two light quanta. Phys. Rev. 46(12), 1087–1091 (1934). (Publisher: American Physical Society)

    ADS  MATH  Google Scholar 

  110. U.I. Uggerhøj, The interaction of relativistic particles with strong crystalline fields. Rev. Mod. Phys. 77(4), 1131–1171 (2005). (Publisher: American Physical Society)

    ADS  Google Scholar 

  111. T.N. Wistisen, A. Di Piazza, H.V. Knudsen, U.I. Uggerhøj, Experimental evidence of quantum radiation reaction in aligned crystals. Nat. Commun. 9(1), 795 (2018). (Number: 1 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  112. B. King, B.M. Dillon, K.A. Beyer, G. Gregori, Axion-like-particle decay in strong electromagnetic backgrounds. J. High Energy Phys. 2019(12), 162 (2019)

    ADS  MathSciNet  Google Scholar 

  113. P. Zhang, S.S. Bulanov, D. Seipt, A.V. Arefiev, A.G.R. Thomas, Relativistic plasma physics in supercritical fields. Phys. Plasmas 27(5), 050601 (2020). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  114. R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179(3), 433–456 (1977). (Publisher: Oxford Academic)

    ADS  Google Scholar 

  115. R. Ruffini, G. Vereshchagin, S.-S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes. Phys. Rep. 487(1), 1–140 (2010)

    ADS  Google Scholar 

  116. F. Curtis Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54(1), 1–66 (1982). (Publisher: American Physical Society)

    ADS  Google Scholar 

  117. A.K. Harding, D. Lai, Physics of strongly magnetized neutron stars. Rep. Prog. Phys. 69(9), 2631–2708 (2006). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  118. A. Philippov, A. Timokhin, A. Spitkovsky, Origin of pulsar radio emission. Phys. Rev. Lett. 124(24), 245101 (2020). (Publisher: American Physical Society)

    ADS  Google Scholar 

  119. P. Mészáros, E. Ramirez-Ruiz, M.J. Rees, \(\text{ e }\pm\) pair cascades and precursors in gamma-ray bursts. Astrophys. J. 554(2), 660 (2001). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  120. C.N. Danson, C. Haefner, J. Bromage, T. Butcher, J.-C.F. Chanteloup, E.A. Chowdhury, A. Galvanauskas, L.A. Gizzi, J. Hein, D.I. Hillier, N.W. Hopps, Y. Kato, E.A. Khazanov, R. Kodama, G. Korn, R. Li, Y. Li, J. Limpert, J. Ma, C.H. Nam, D. Neely, D. Papadopoulos, R.R. Penman, L. Qian, J.J. Rocca, A.A. Shaykin, C.W. Siders, C. Spindloe, S. Szatmári, R.M.G.M. Trines, J. Zhu, P. Zhu, J.D. Zuegel, Petawatt and exawatt class lasers worldwide. High Power Laser Sci. Eng. 7, e54 (2019)

    Google Scholar 

  121. N.V. Elkina, A.M. Fedotov, I.Y. Kostyukov, M.V. Legkov, N.B. Narozhny, E.N. Nerush, H. Ruhl, QED cascades induced by circularly polarized laser fields. Phys. Rev. Spec. Top. Accel. Beams 14(5), 054401 (2011)

    ADS  Google Scholar 

  122. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Dense electron-positron plasmas and ultraintense \(\gamma\) rays from laser-irradiated solids. Phys. Rev. Lett. 108(16), 165006 (2012)

    ADS  Google Scholar 

  123. S.S. Bulanov, C.B. Schroeder, E. Esarey, W.P. Leemans, Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses. Phys. Rev. A 87(6), 062110 (2013). (Publisher: American Physical Society)

    ADS  Google Scholar 

  124. W. Luo, Y.-B. Zhu, H.-B. Zhuo, Y.-Y. Ma, Y.-M. Song, Z.-C. Zhu, X.-D. Wang, I.C.E. Xing-Huo Li, Turcu, M. Chen, Dense electron-positron plasmas and gamma-ray bursts generation by counter-propagating quantum electrodynamics-strong laser interaction with solid targets. Phys. Plasmas 22(6), 063112 (2015). (Publisher: American Institute of Physics)

  125. I.C.E Turcu, F. Negoita, D.A. Jaroszynski, P. Mckenna, S. Balascuta, D. Ursescu, I. Dancus, M.O. Cernaianu, M.V. Tataru, P. Ghenuche, D. Stutman, A. Boianu, M. Risca, M. Toma, C. Petcu, G. Acbas, S.R. Yoffe, A. Noble, B. Ersfeld, E. Brunetti, R. Capdessus, C. Murphy, C.P. Ridgers, D. Neely, S.P.D. Mangles, R.J. Gray, A.G.R. Thomas, J.G. Kirk, A. Ilderton, M. Marklund, D.F. Gordon, B. Hafizi, D. Kaganovich, J.P. Palastro, E. D’Humieres, M Zepf, G Sarri, H. Gies, F. Karbstein, J Schreiber, G.G. Paulus, B. Dromey, C. Harvey, A. Di Piazza, C H Keitel, M.C. Kaluza, S. Gales, N.V. Zamfir. High Field Physics and QED Experiments at ELI-NP, p 88

  126. P.H. Bucksbaum, G.V. Dunne, F. Fiuza, S. Meuren, M.E. Peskin, D.A. Reis, G. Torgrimsson, G. White, V. Yakimenko, Probing QED Cascades and Pair Plasmas in Laboratory Experiments LoI to Cosmic Frontier, p 5 (2020)

  127. S.S. Bulanov, C. Benedetti, T. Blackburn, E. Esarey, C.G.R. Geddes, T. Heinzl, A. Huebl, A. Ilderton, R. Lehe, M. Marklund, K. Nakamura, C.B. Schroeder, D. Seipt, A.G.R. Thomas, J. van Tilborg, J.-L. Vay, H. Vincenti, Snowmass2021 Letter of Interest, p. 3 (2020)

  128. D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, Positron production in multiphoton light-by-light scattering. Phys. Rev. Lett. 79(9), 1626–1629 (1997). (Publisher: American Physical Society)

    ADS  Google Scholar 

  129. K. Poder, M. Tamburini, G. Sarri, A. Di Piazza, S. Kuschel, C.D. Baird, K. Behm, S. Bohlen, J.M. Cole, D.J. Corvan, M. Duff, E. Gerstmayr, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, P. McKenna, C.D. Murphy, Z. Najmudin, C.P. Ridgers, G.M. Samarin, D.R. Symes, A.G.R. Thomas, J. Warwick, M. Zepf, Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser. Phys. Rev. X 8(3), 031004 (2018). (Publisher: American Physical Society)

    Google Scholar 

  130. J.M. Cole, K.T. Behm, E. Gerstmayr, T.G. Blackburn, J.C. Wood, C.D. Baird, M.J. Duff, C. Harvey, A. Ilderton, A.S. Joglekar, K. Krushelnick, S. Kuschel, M. Marklund, P. McKenna, C.D. Murphy, K. Poder, C.P. Ridgers, G.M. Samarin, G. Sarri, D.R. Symes, A.G.R. Thomas, J. Warwick, M. Zepf, Z. Najmudin, S.P.D. Mangles, Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam. Phys. Rev. X 8(1), 011020 (2018). (Publisher: American Physical Society)

    Google Scholar 

  131. V. Yakimenko, L. Alsberg, E. Bong, G. Bouchard, C. Clarke, C. Emma, S. Green, C. Hast, M.J. Hogan, J. Seabury, N. Lipkowitz, B. O’Shea, D. Storey, G. White, G. Yocky, FACET-II facility for advanced accelerator experimental tests. Phys. Rev. Accel. Beams 22(10), 101301 (2019)

    ADS  Google Scholar 

  132. M. Altarelli, R. Assmann, F. Burkart, B. Heinemann, T. Heinzl, T. Koffas, A. R. Maier, D. Reis, A. Ringwald, M. Wing, Summary of strong-field QED Workshop (2019). arXiv:1905.00059 [hep-ex, physics:hep-ph, physics:physics]

  133. H. Abramowicz, M. Altarelli, R. Aßmann, T. Behnke, Y. Benhammou, O. Borysov, M. Borysova, R. Brinkmann, F. Burkart, K. Büßer, O. Davidi, W. Decking, N. Elkina, H. Harsh, A. Hartin, I. Hartl, B. Heinemann, T. Heinzl, N. TalHod, M. Hoffmann, A. Ilderton, B. King, A. Levy, J. List, A. R. Maier, E. Negodin, G. Perez, I. Pomerantz, A. Ringwald, C. Rödel, M. Saimpert, F. Salgado, G. Sarri, I. Savoray, T. Teter, M. Wing, M. Zepf, Letter of intent for the LUXE experiment (2019). arXiv:1909.00860 [hep-ex, physics:physics]

  134. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Coherent focusing of high harmonics: a new way towards the extreme intensities. Phys. Rev. Lett. 94(10), 103903 (2005)

    ADS  Google Scholar 

  135. M. Tamburini, A. Di Piazza, T.V. Liseykina, C.H. Keitel, Plasma-based generation and control of a single few-cycle high-energy ultrahigh-intensity laser pulse. Phys. Rev. Lett. 113(2), 025005 (2014). (Publisher: American Physical Society)

    ADS  Google Scholar 

  136. H.-C. Wu, J. Meyer-ter Vehn, J. Fernández, B.M. Hegelich, Uniform laser-driven relativistic electron layer for coherent Thomson scattering. Phys. Rev. Lett. 104(23), 234801 (2010). (Publisher: American Physical Society)

    ADS  Google Scholar 

  137. M. Kando, A.S. Pirozhkov, K. Kawase, T.Z. Esirkepov, Y. Fukuda, H. Kiriyama, H. Okada, I. Daito, T. Kameshima, Y. Hayashi, H. Kotaki, M. Mori, J.K. Koga, H. Daido, A.Y. Faenov, T. Pikuz, J. Ma, L.-M. Chen, E.N. Ragozin, T. Kawachi, Y. Kato, T. Tajima, S.V. Bulanov, Enhancement of photon number reflected by the relativistic flying mirror. Phys. Rev. Lett. 103(23), 235003 (2009)

    ADS  Google Scholar 

  138. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966). (Conference Name: IEEE Transactions on Antennas and Propagation)

    ADS  MATH  Google Scholar 

  139. A. Pukhov, Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab). J. Plasma Phys. 61(3), 425–433 (1999). (Publisher: Cambridge University Press)

    ADS  Google Scholar 

  140. M. Karkkainen, E. Gjonaj, T. Lau, T. Weiland, Low-dispersion wake field calculation tools. In: Proc. International Computational Accelerator Physics Conference, pp. 35–40 (2006)

  141. J.-L. Vay, C.G.R. Geddes, E. Cormier-Michel, D.P. Grote, Numerical methods for instability mitigation in the modeling of laser wakefield accelerators in a Lorentz-boosted frame. J. Comput. Phys. 230(15), 5908–5929 (2011)

    ADS  Google Scholar 

  142. B.M. Cowan, D.L. Bruhwiler, J.R. Cary, E. Cormier-Michel, C.G.R. Geddes, Generalized algorithm for control of numerical dispersion in explicit time-domain electromagnetic simulations. Phys. Rev. Spec. Top. Accel. Beams 16(4), 041303 (2013). (Publisher: American Physical Society)

    ADS  Google Scholar 

  143. R. Nuter, M. Grech, P. Gonzalez, A. Martinez, G. Bonnaud, E. d’Humières, Maxwell solvers for the simulations of the laser–matter interaction. Eur. Phys. J. D 68(6), 177 (2014)

    ADS  Google Scholar 

  144. R.A. Fonseca, J. Vieira, F. Fiuza, A. Davidson, F.S. Tsung, W.B. Mori, L.O. Silva, Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators. Plasma Phys. Controll. Fusion 55(12), 124011 (2013). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  145. S. Jalas, I. Dornmair, R. Lehe, H. Vincenti, J.-L. Vay, M. Kirchen, A.R. Maier, Accurate modeling of plasma acceleration with arbitrary order pseudo-spectral particle-in-cell methods. Phys. Plasmas 24(3), 033115 (2017). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  146. J.-L. Vay, Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15(5), 056701 (2008). (Publisher: American Institute of Physics)

    ADS  Google Scholar 

  147. P. Kogge, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler, D. Klein, R. Lucas, ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems. Defense Advanced Research Projects Agency Information Processing Techniques Office (DARPA IPTO), Techinal Representative, p. 15 (2008)

  148. B. Fornberg, High-order finite differences and the pseudospectral method on staggered grids. SIAM J. Numer. Anal. 27(4), 904–918 (1990). (Publisher: Society for Industrial and Applied Mathematics)

    ADS  MathSciNet  MATH  Google Scholar 

  149. I.R. Khan, R. Ohba, Closed-form expressions for the finite difference approximations of first and higher derivatives based on Taylor series. J. Comput. Appl. Math. 107(2), 179–193 (1999)

    MathSciNet  MATH  Google Scholar 

  150. I.R. Khan, R. Ohba, N. Hozumi, Mathematical proof of closed form expressions for finite difference approximations based on Taylor series. J. Comput. Appl. Math. 150(2), 303–309 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  151. Q.H. Liu, The PSTD algorithm: a time-domain method requiring only two cells per wavelength. Microw. Opt. Technol. Lett. 15(3), 158–165 (1997)https://doi.org/10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

    Article  Google Scholar 

  152. I. Haber, R. Lee, H. Klein, J. Boris, Advances in electromagnetic simulation techniques. In: Proc. Sixth Conf. Num. Sim. Plasmas (Berkeley, pp. 46–48, 1973)

  153. B. Gustafsson, H.-O. Kreiss, J. Oliger, Time Dependent Problems and Difference Methods, vol. 24 (Wiley, Oxford, 1995)

    MATH  Google Scholar 

  154. S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran, T. Peterka, J. Insley, D. Daniel, P. Fasel, N. Frontiere, Z. Lukic. The Universe at Extreme Scale: Multi-Petaflop Sky Simulation on the BG/Q (2012). arXiv:1211.4864 [astro-ph, physics:physics]

  155. A. Gonoskov, Ultra-intense laser-plasma interaction for applied and fundamental physics (Umeå University, Sweden, 2013)

    Google Scholar 

  156. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19(90), 297–301 (1965)

    MathSciNet  MATH  Google Scholar 

  157. D. Pekurovsky, P3DFFT: a framework for parallel computations of fourier transforms in three dimensions. SIAM J. Sci. Comput. 34(4), C192–C209 (2012). (Publisher: Society for Industrial and Applied Mathematics)

    MathSciNet  MATH  Google Scholar 

  158. J.L. Hennessy, Computer Architecture?: A Quantitative Approach (Morgan Kaufmann Publishers, San Francisco, 2003)

    MATH  Google Scholar 

  159. Y. Solihin, Fundamentals of Parallel Multicore Architecture (CRC Press, Boca Raton, 2015)

    Google Scholar 

  160. J.G. Charney, R. FjÖrtoft, J. Von Neumann, Numerical integration of the barotropic vorticity equation. Tellus 2(4), 237–254 (1950). https://doi.org/10.3402/tellusa.v2i4.8607. (Publisher: Taylor & Francis)

    Article  ADS  MathSciNet  Google Scholar 

  161. B.B. Godfrey, J.-L. Vay, Suppressing the numerical Cherenkov instability in FDTD PIC codes. J. Comput. Phys. 267, 1–6 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  162. J.-L. Vay, A. Almgren, J. Bell, L. Ge, D.P. Grote, M. Hogan, O. Kononenko, R. Lehe, A. Myers, C. Ng, J. Park, R. Ryne, O. Shapoval, M. Thévenet, W. Zhang, Warp-X: a new exascale computing platform for beam-plasma simulations. Nucl. Instrum. Methods Phys. Res. Sect. A 909, 476–479 (2018)

    ADS  Google Scholar 

  163. V.K. Decyk, T.V. Singh, Particle-in-Cell algorithms for emerging computer architectures. Comput. Phys. Commun. 185(3), 708–719 (2014)

    ADS  MathSciNet  Google Scholar 

  164. M.D. McCool, A.D. Robison, J. Reinders, Structured Parallel Programing: Patterns for Efficient Computation (Elsevier, Morgan Kaufmann, Amsterdam, 2012)

    Google Scholar 

  165. M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, D. Walker, MPI-the Complete Reference: The MPI core (MIT Press, Cambridge, 1998)

    Google Scholar 

  166. B. Chapman, G. Jost, R. Van Der Pas, Using OpenMP (The MIT Press, Cambridge, 2008)

    Google Scholar 

  167. D.V. Anderson, D.E. Shumaker, Hybrid Ordered Particle Simulation (HOPS) code for plasma modelling on vector-serial, vector-parallel, and massively parallel computers. Comput. Phys. Commun. 87(1), 16–34 (1995)

    ADS  MATH  Google Scholar 

  168. A. Héron, J.C. Adam, Particle code optimization on vector computers. J. Comput. Phys. 85(2), 284–301 (1989)

    ADS  MATH  Google Scholar 

  169. G. Paruolo, A vector-efficient and memory-saving interpolation algorithm for PIC codes on a cray X-MP. J. Comput. Phys. 89(2), 462–482 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  170. E.J. Horowitz, Vectorizing the interpolation routines of particle-in-cell codes. J. Comput. Phys. 68(1), 56–65 (1987)

    ADS  MATH  Google Scholar 

  171. A. Nishiguchi, S. Orii, T. Yabe, Vector calculation of particle code. J. Comput. Phys. 61(3), 519–522 (1985)

    ADS  MATH  Google Scholar 

  172. A. Leblanc, S. Monchocé, C. Bourassin-Bouchet, S. Kahaly, F. Quéré, Ptychographic measurements of ultrahigh-intensity laser-plasma interactions. Nat. Phys. 12(4), 301–305 (2016)

    Google Scholar 

  173. H. Kallala, F. Quéré, H. Vincenti, Techniques to generate intense isolated attosecond pulses from relativistic plasma mirrors. Phys. Rev. Res. 2(4), 043007 (2020). (Publisher: American Physical Society)

    Google Scholar 

  174. H. Vincenti, F. Quéré, Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses. Phys. Rev. Lett. 108(11), 113904 (2012)

    ADS  Google Scholar 

  175. K.T. Kim, C. Zhang, T. Ruchon, J.-F. Hergott, D.M. Thierry Auguste, P.B. Villeneuve, F. Corkum, F. Quéré, Photonic streaking of attosecond pulse trains. Nat. Photon. 7(8), 651–656 (2013). (Number: 8 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  176. C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S. Boege, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, W. Ragg, D.L. Burke, R.C. Field, G. Horton-Smith, A.C. Odian, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Observation of nonlinear effects in Compton scattering. Phys. Rev. Lett. 76(17), 3116–3119 (1996). (Publisher: American Physical Society)

    ADS  Google Scholar 

  177. D.A. Reis. Experiments in Strong-field QED, p. 111

  178. A. Ringwald, Pair production from vacuum at the focus of an X-ray free electron laser. Phys. Lett. B 510(1), 107–116 (2001)

    ADS  Google Scholar 

  179. I. Jong Kim, K.H. Pae, C.M. Kim, H.T. Kim, H. Yun, S.J. Yun, J.H. Sung, S.K. Lee, J.W. Yoon, Y. Tae Jun, T.M. Jeong, C.H. Nam, J. Lee, Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors. Nat. Commun. 3(1), 1231 (2012)

    ADS  Google Scholar 

  180. D. Kiefer, M. Yeung, T. Dzelzainis, P.S. Foster, S.G. Rykovanov, C.L. Lewis, R.S. Marjoribanks, H. Ruhl, D. Habs, J. Schreiber, M. Zepf, B. Dromey, Relativistic electron mirrors from nanoscale foils for coherent frequency upshift to the extreme ultraviolet. Nat. Commun. 4, 1763 (2013)

    ADS  Google Scholar 

  181. N. Naumova, I. Sokolov, J. Nees, A. Maksimchuk, V. Yanovsky, G. Mourou, Attosecond electron bunches. Phys. Rev. Lett. 93(19), 195003 (2004)

    ADS  Google Scholar 

  182. J. Nees, N. Naumova, E. Power, V. Yanovsky, I. Sokolov, A. Maksimchuk, S.-W. Bahk, V. Chvykov, G. Kalintchenko, B. Hou, G. Mourou, Relativistic generation of isolated attosecond pulses: a different route to extreme intensity. J. Mod. Opt. 52(2–3), 305–319 (2005)

    ADS  Google Scholar 

  183. M.R. Edwards, J.M. Mikhailova, The X-ray emission effectiveness of plasma mirrors: reexamining power-law scaling for relativistic high-order harmonic generation. Sci. Rep. 10(1), 5154 (2020). (Number: 1 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  184. A.A. Solodov, V.M. Malkin, N.J. Fisch, Limits for light intensification by reflection from relativistic plasma mirrors. Phys. Plasmas 13(9), 093102 (2006)

    ADS  Google Scholar 

  185. N.M. Naumova, J.A. Nees, G.A. Mourou, Relativistic attosecond physics. Phys. Plasmas 12(5), 056707 (2005)

    ADS  Google Scholar 

  186. G. Yan-Jun, O. Klimo, S.V. Bulanov, S. Weber, Brilliant gamma-ray beam and electron-positron pair production by enhanced attosecond pulses. Commun. Phys. 1(1), 1–9 (2018). (Number: 1 Publisher: Nature Publishing Group)

    Google Scholar 

  187. J.M. Rodenburg, Ptychography and related diffractive imaging methods, in Advances in Imaging and Electron Physics, vol. 150, ed. by P.W. Hawkes (Elsevier, Oxford, 2008), pp.87–184

    Google Scholar 

  188. L. Fedeli, A. Sainte-Marie, N. Zaïm, M. Thévenet, J.-L. Vay, A. Myers, F. Quéré, H. Vincenti, Probing strong-field qed with doppler-boosted petawatt-class lasers. Phys. Rev. Lett. 127(11), 114801 (2021)

    ADS  Google Scholar 

  189. S. Maruo, O. Nakamura, S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett. 22(2), 132–134 (1997)

    ADS  Google Scholar 

  190. N.B. Narozhny, Expansion parameter of perturbation theory in intense-field quantum electrodynamics. Phys. Rev. D 21(4), 1176–1183 (1980). (Publisher: American Physical Society)

    ADS  MathSciNet  Google Scholar 

  191. A. Fedotov, Conjecture of perturbative QED breakdown at \(\upalpha \upchi 2/3\gtrsim\) 1. J. Phys. Conf. Ser. 826, 012027 (2017). (Publisher: IOP Publishing)

    Google Scholar 

  192. C. Baumann, E.N. Nerush, A. Pukhov, I. Yu Kostyukov, Probing non-perturbative QED with electron-laser collisions. Sci. Rep. 9(1), 9407 (2019). (Number: 1 Publisher: Nature Publishing Group)

    ADS  Google Scholar 

  193. A. Di Piazza, T.-N. Wistisen, M. Tamburini, U.-I. Uggerhøj, Testing strong field QED close to the fully nonperturbative regime using aligned crystals. Phys. Rev. Lett. 124(4), 044801 (2020). (Publisher: American Physical Society)

    ADS  Google Scholar 

  194. V. Yakimenko, S. Meuren, F. Del Gaudio, C. Baumann, A. Fedotov, F. Fiuza, T. Grismayer, M.-J. Hogan, A. Pukhov, L.-O. Silva, G. White, Prospect of studying nonperturbative QED with beam-beam collisions. Phys. Rev. Lett. 122(19), 190404 (2019). (Publisher: American Physical Society)

    ADS  Google Scholar 

  195. T.G. Blackburn, A. Ilderton, M. Marklund, C.P. Ridgers, Reaching supercritical field strengths with intense lasers. New J. Phys. 21(5), 053040 (2019). (Publisher: IOP Publishing)

    ADS  Google Scholar 

  196. A. Sainte-Marie, L. Fedeli, N. Zaïm, F. Karbstein, H. Vincenti, Quantum vacuum processes in the extremely intense light of relativistic plasma mirror sources. New J. Phys. 24(6), 065005 (2022)

    ADS  MathSciNet  Google Scholar 

Download references

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871072. This research was supported by the French National Research Agency (ANR) T-ERC program (Grant No. ANR-18-ERC2-0002) and PRC program (Grant No. ANR-22-CE30-0002). This research used the open-source particle-in-cell code WarpX https://github.com/ECP-WarpX/WarpX. Primary WarpX contributors are with LBNL, LLNL, CEA-LIDYL, SLAC, DESY, CERN, and TAE. We acknowledge all WarpX contributors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri Vincenti.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vincenti, H., Clark, T., Fedeli, L. et al. Plasma mirrors as a path to the Schwinger limit: theoretical and numerical developments. Eur. Phys. J. Spec. Top. 232, 2303–2346 (2023). https://doi.org/10.1140/epjs/s11734-023-00909-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00909-2

Navigation