Skip to main content
Log in

Cyclooctane chains: mathematical expected values based on atom degree and sum-degree of Zagreb, harmonic, sum-connectivity, and Sombor descriptors

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Cyclooctane chains are an imperative class of cycloalkane in computational chemistry that are macrocyclic fragrant hydrocarbons. The fascinating characteristics and conformational properties of cyclooctanes have attracted numerous applications in the chemical and biological industries. In this manuscript, we investigate the structural characteristics of cyclooctane chains with underlying graph parameters. We consider the random chain under possible probabilities and derive the mathematical expected values of topological descriptors of cyclooctane induced from atom degree partition as well as a sum-degree partition, which is a finer partition than atom degree. Additionally, we carried out the comparative analysis for different descriptors considered in our study and showed special classes of cyclooctane chains with exact values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

No data are associated with the manuscript.

References

  1. I.G. Schnetmann, M. Brookhart, Mechanistic studies of the transfer dehydrogenation of cyclooctane catalyzed by iridium bis(phosphinite) p-XPCP pincer complexes. J. Am. Chem. Soc. 126(30), 9330–9338 (2004)

    Article  Google Scholar 

  2. Y.W. Chan, K.S. Chan, Metalloradical-catalyzed aliphatic carbon-carbon activation of cyclooctane. J. Am. Chem. Soc. 132(20), 6920–6922 (2010)

    Article  Google Scholar 

  3. D. Satoh, H. Matsuhashi, H. Nakamuraa, K. Arata, Isomerization of cycloheptane, cyclooctane, and cyclodecane catalyzed by sulfated zirconia-comparison with open-chain alkanes. Phys. Chem. Chem. Phys. 5(19), 4343–4349 (2003)

    Article  Google Scholar 

  4. R.K. Bharadwaj, Conformational properties of cyclooctane: a molecular dynamics simulation study. Mol. Phys. 98(4), 211–218 (2000)

    Article  ADS  Google Scholar 

  5. F. Anet, Dynamics of eight-membered rings in the cylooctane class. Dyn. Chem. 169–220 (2007)

  6. S. Martin, A. Thompson, E.A. Coutsisas, J.-P. Watson, Topology of cyclo-octane energy landscape. J. Chem. Phys. 132(23), 234115 (2010)

    Article  ADS  Google Scholar 

  7. A. Aranda, Y. Díaz-De-Mera, I. Bravo, L. Morales, Cyclooctane tropospheric degradation initiated by reaction with \({{{\rm C}}_{1}}\) atoms. Environ. Sci. Pollut. Res. Int. 14(3), 176–181 (2007)

    Article  Google Scholar 

  8. U. Neuenschwander, I. Hermans, The conformations of cyclooctene: consequences for epoxidation chemistry. J. Org. Chem. 76, 10236–10240 (2011)

    Article  Google Scholar 

  9. N. Theyssena, W. Leitner, Selective oxidation of cyclooctane to cyclootanone with molecular oxygen in the presence of compressed carbon dioxide. Chem. Commun. 5, 410–411 (2002)

    Article  Google Scholar 

  10. I. Gutman, Geometric approach to degree-based topological indices: Sombor indices. MATCH Commun. Math. Comput. Chem. 86, 11–16 (2021)

    MATH  Google Scholar 

  11. S.R.J. Kavitha, J. Abraham, M. Arockiaraj, J. Jency, K. Balasubramanian, Topological characterization and graph entropies of tessellations of kekulene structures: Existence of isentropic structures and applications to thermochemistry, NMR and ESR. J. Phys. Chem. A 125(36), 8140–8158 (2021)

    Article  Google Scholar 

  12. M. Arockiaraj, J. Jency, J. Abraham, S.R.J. Kavitha, K. Balasubramanian, Two-dimentional coronene fractal structures: topological entropy measures, energetics, NMR and ESR spectroscopic patterns and existence of isentropic structures. Mol. Phys. 120(11), e2079568 (2022)

    Article  ADS  Google Scholar 

  13. P.S. Ranjini, V. Lokesha, A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index. Int. J. Graph Theory 1(4), 116–121 (2013)

    Google Scholar 

  14. S. Wei, X. Ke, G. Hao, Comparing the expected values of atom-bond connectivity and geometric-arithmetic indices in random spiro chains. J. Inequal. Appl. 2018, 45 (2018)

    Article  MATH  Google Scholar 

  15. G. Huang, M. Kuang, H. Deng, The expected values of irchhoff indices in the random polyphenyl and spiro chains. Ars. Mat. Contemp. 9(2), 207–217 (2015)

    MATH  Google Scholar 

  16. A. Jahanbani, The expected values of the first Zagreb and Randić indices in random polyphenyl chains. Polycycl. Aromat. Compd. 42(4), 1851–1860 (2022)

    Article  Google Scholar 

  17. Z. Raza, The harmonic and second Zagreb indices in random polyphenyl and spiro chains. Polycycl. Aromat. Compd. 42(3), 671–680 (2022)

    Article  Google Scholar 

  18. Z. Raza, K. Naz, S. Ahmad, Expected values of molecular descriptors in random polyphenyl chain. Emerg. Sci. J. 6(1), 151–165 (2022)

    Article  Google Scholar 

  19. Z. Raza, M. Imran, Expected values of some molecular descriptors in random cyclooctane chains. Symmetry 13(11), 2197 (2021)

    Article  ADS  Google Scholar 

  20. Z. Raza, The expected values of arithmetic bond connectivity and geometric indices in random phenylene chains. Heliyon 6(7), e04479 (2020)

    Article  Google Scholar 

  21. S. Wei, W.C. Shiu, Enumeration of Wiener indices in random polygonal chains. J. Math. Anal. Appl. 469(2), 537–548 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Wei, X. Ke, Y. Wang, Wiener indices in random cyclooctane chains. Wuhan Univ. J. Nat. Sci. 23, 498–502 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. W. Yang, F. Zhang, Wiener index in random polyphenyl chains. MATCH Commun. Math. Comput. Chem. 68, 371–376 (2012)

    MathSciNet  MATH  Google Scholar 

  24. J.B. Liu, J.J. Gu, K. Wang, The expected values for the Gutman index, Schultz index, and some Sombor indices of a random cyclooctane chain. Int. J. Quantum Chem. 123(3), e27022 (2023)

    Article  Google Scholar 

  25. J.B. Liu, T. Zhang, Y. Wang, W. Lin, The Kirchhoff index and spanning trees of Möbius/cylinder octagonal chain. Discrete Appl. Math. 307, 22–31 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

ZR is supported by the University of Sharjah Research Grants \(\# 2102144098\) and MASEP Research Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micheal Arockiaraj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest regarding the publication of this paper.

Additional information

S.I. : Recent Advancements in Composite Materials and Structures for Energy applications. Guest editor: Nuggehalli M. Ravindra

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raza, Z., Arockiaraj, M., Bataineh, M.S. et al. Cyclooctane chains: mathematical expected values based on atom degree and sum-degree of Zagreb, harmonic, sum-connectivity, and Sombor descriptors. Eur. Phys. J. Spec. Top. (2023). https://doi.org/10.1140/epjs/s11734-023-00809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00809-5

Navigation