Skip to main content
Log in

Advances in droplet aerobreakup

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Secondary atomization of a liquid droplet can be achieved by subjecting it to a high-speed gas stream. This is referred as the aerodynamic breakup, and is encountered in various natural and industrial processes. Here we present a concise review and discussion on the developments of the aerodynamic breakup for Newtonian and non-Newtonian liquid droplets. We discuss different breakup modes, suitable non-dimensional numbers, and the role of hydrodynamic instabilities in the perspective of droplet atomization. Special attention is given to the shock induced atomization of polymeric and liquid metal droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Villermaux, B. Bossa, Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5(9), 697–702 (2009)

    Google Scholar 

  2. H.-J. Odenthal, N. Vogl, T. Brune, N. Apell, I. Roisman, C. Tropea, Recent modeling approaches to close-coupled atomization for powder production. (2021)

  3. K. Dhivyaraja, D. Gaddes, E. Freeman, S. Tadigadapa, M. Panchagnula, Dynamical similarity and universality of drop size and velocity spectra in sprays. J. Fluid Mech. 860, 510–543 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  4. K. Rajamanickam, S. Basu, On the dynamics of vortex-droplet interactions, dispersion and breakup in a coaxial swirling flow. J. Fluid Mech. 827, 572–613 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  5. R. Mondal, A. Das, D. Sen, D.K. Satapathy, M.G. Basavaraj, Spray drying of colloidal dispersions containing ellipsoids. J. Colloid Interface Sci. 551, 242–250 (2019)

    ADS  Google Scholar 

  6. E. Sharma, S. De, Large eddy simulation-based turbulent combustion models for reactive sprays: recent advances and future challenges. J. Indian Inst. Sci. 99(1), 25–41 (2019)

    Google Scholar 

  7. S. Sharma, A.P. Singh, S. Basu, On the dynamics of vortex–droplet co-axial interaction: insights into droplet and vortex dynamics. J. Fluid Mech. 918 (2021)

  8. L.-P. Hsiang, G.M. Faeth, Drop deformation and breakup due to shock wave and steady disturbances. Int. J. Multiph. Flow 21(4), 545–560 (1995)

    MATH  Google Scholar 

  9. D.D. Joseph, J. Belanger, G. Beavers, Breakup of a liquid drop suddenly exposed to a high-speed airstream. Int. J. Multiph. Flow 25(6–7), 1263–1303 (1999)

    MATH  Google Scholar 

  10. B.E. Gelfand, Droplet breakup phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22(3), 201–265 (1996)

    MathSciNet  Google Scholar 

  11. C. Van. Aalburg, B. Leer, G. Faeth, Deformation and drag properties of round drops subjected to shock-wave disturbances. AIAA J. 41(12), 2371–2378 (2003)

    ADS  Google Scholar 

  12. Z. Wang, T. Hopfes, M. Giglmaier, N.A. Adams, Effect of mach number on droplet aerobreakup in shear stripping regime. Exp. Fluids 61(9), 1–17 (2020)

    Google Scholar 

  13. S. Sharma, A.P. Singh, S.S. Rao, A. Kumar, S. Basu, Shock induced aerobreakup of a droplet. J. Fluid Mech. 929 (2021)

  14. T. Theofanous, G. Li, On the physics of aerobreakup. Phys. Fluids 20(5), 052103 (2008)

    ADS  MATH  Google Scholar 

  15. L. Biasiori-Poulanges, H. El-Rabii, High-magnification shadowgraphy for the study of drop breakup in a high-speed gas flow. Opt. Lett. 44(23), 5884–5887 (2019)

    ADS  Google Scholar 

  16. S. Sembian, M. Liverts, N. Tillmark, N. Apazidis, Plane shock wave interaction with a cylindrical water column. Phys. Fluids 28(5), 056102 (2016)

    ADS  Google Scholar 

  17. M. Jain, R.S. Prakash, G. Tomar, R. Ravikrishna, Secondary breakup of a drop at moderate weber numbers. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 471(2177), 20140930 (2015)

    Google Scholar 

  18. L. Opfer, I.V. Roisman, J. Venzmer, M. Klostermann, C. Tropea, Droplet-air collision dynamics: evolution of the film thickness. Phys. Rev. E 89(1), 013023 (2014)

    ADS  Google Scholar 

  19. H. Zhao, H.-F. Liu, W.-F. Li, J.-L. Xu, Morphological classification of low viscosity drop bag breakup in a continuous air jet stream. Phys. Fluids 22(11), 114103 (2010)

    ADS  Google Scholar 

  20. I.M. Jackiw, N. Ashgriz, On aerodynamic droplet breakup. J. Fluid Mech. 913 (2021)

  21. Z. Xu, T. Wang, Z. Che, Droplet breakup in airflow with strong shear effect. J. Fluid Mech. 941 (2022)

  22. D. Guildenbecher, C. López-Rivera, P. Sojka, Secondary atomization. Exp. Fluids 46(3), 371–402 (2009)

    Google Scholar 

  23. S.K. Soni, P.K. Kirar, P. Kolhe, K.C. Sahu, Deformation and breakup of droplets in an oblique continuous air stream. Int. J. Multiph. Flow 122, 103141 (2020)

    Google Scholar 

  24. H. Zhao, Z.-W. Wu, W.-F. Li, J.-L. Xu, H.-F. Liu, Transition weber number between surfactant-laden drop bag breakup and shear breakup of secondary atomization. Fuel 221, 138–143 (2018)

    Google Scholar 

  25. N.K. Chandra, S. Sharma, S. Basu, A. Kumar, Shock induced aerobreakup of a polymeric droplet. arXiv preprint arXiv:2205.15597 (2022)

  26. R. Suryaprakash, G. Tomar, Secondary breakup of drops. J. Indian Inst. Sci. 99(1), 77–91 (2019)

    Google Scholar 

  27. R. Brodkey, Formation of Drops and Bubbles. The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)

    Google Scholar 

  28. M. Pilch, C. Erdman, Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int. J. Multiph. Flow 13(6), 741–757 (1987)

    Google Scholar 

  29. R. Cohen, Effect of viscosity on drop breakup. Int. J. Multiph. Flow 20(1), 211–216 (1994)

    Google Scholar 

  30. V. Radhakrishna, W. Shang, L. Yao, J. Chen, P.E. Sojka, Experimental characterization of secondary atomization at high Ohnesorge numbers. Int. J. Multiph. Flow 138, 103591 (2021)

    Google Scholar 

  31. T. Theofanous, Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661–690 (2011)

    ADS  MATH  Google Scholar 

  32. P.G. Drazin, W.H. Reid, Hydrodynamic Stability, 2 edn. (2004)

  33. I.M. Jackiw, N. Ashgriz, Prediction of the droplet size distribution in aerodynamic droplet breakup. J. Fluid Mech. 940 (2022)

  34. N. Liu, Z. Wang, M. Sun, H. Wang, B. Wang, Numerical simulation of liquid droplet breakup in supersonic flows. Acta Astronaut. 145, 116–130 (2018)

    ADS  Google Scholar 

  35. M. Jalaal, K. Mehravaran, Transient growth of droplet instabilities in a stream. Phys. Fluids 26(1), 012101 (2014)

    ADS  Google Scholar 

  36. P. Marmottant, E. Villermaux, On spray formation. J. Fluid Mech. 498, 73–111 (2004)

    ADS  MATH  Google Scholar 

  37. D. Kim, O. Desjardins, M. Herrmann, P. Moin, Toward two-phase simulation of the primary breakup of a round liquid jet by a coaxial flow of gas. In: Center for Turbulence Research Annual Research Briefs, vol. 185 (2006)

  38. E. Villermaux, Mixing and spray formation in coaxial jets. J. Propul. Power 14(5), 807–817 (1998)

    Google Scholar 

  39. J.C. Padrino, D. Joseph, Shear instability of a planar liquid jet immersed in a high speed gas stream. PhD thesis, Master’s thesis, University of Minnesota (2006)

  40. T. Theofanous, V. Mitkin, C. Ng, The physics of aerobreakup. III. Viscoelastic liquids. Phys. Fluids 25(3), 032101 (2013)

    ADS  Google Scholar 

  41. H. Chen, Two-dimensional simulation of stripping breakup of a water droplet. AIAA J. 46(5), 1135–1143 (2008)

    ADS  Google Scholar 

  42. P. Sridharan, T. Jackson, J. Zhang, S. Balachandar, S. Thakur, Shock interaction with deformable particles using a constrained interface reinitialization scheme. J. Appl. Phys. 119(6), 064904 (2016)

    ADS  Google Scholar 

  43. B. Guan, Y. Liu, C.-Y. Wen, H. Shen, Numerical study on liquid droplet internal flow under shock impact. AIAA J. 56(9), 3382–3387 (2018)

    ADS  Google Scholar 

  44. P. Das, H. Udaykumar, A sharp-interface method for the simulation of shock-induced vaporization of droplets. J. Comput. Phys. 405, 109005 (2020)

    MathSciNet  MATH  Google Scholar 

  45. G. Ben-Dor, G. Ben-Dor, Shock Wave Reflection Phenomena, 2 edn. (2007)

  46. B. Scharfman, A. Techet, J. Bush, L. Bourouiba, Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Exp. Fluids 57(2), 1–9 (2016)

    Google Scholar 

  47. M.B. Padwal, B. Natan, D. Mishra, Gel propellants. Prog. Energy Combust. Sci. 83, 100885 (2021)

    Google Scholar 

  48. C. Cervantes-Martínez, L. Medina-Torres, R. González-Laredo, F. Calderas, G. Sánchez-Olivares, E. Herrera-Valencia, J.G. Infante, N. Rocha-Guzman, J. Rodriguez-Ramirez, Study of spray drying of the aloe vera mucilage (aloe vera barbadensis miller) as a function of its rheological properties. LWT-Food Sci. Technol. 55(2), 426–435 (2014)

    Google Scholar 

  49. L. Qian, X. Zhong, C. Zhu, J. Lin, An experimental investigation on the secondary breakup of carboxymethyl cellulose droplets. Int. J. Multiph. Flow 136, 103526 (2021)

    Google Scholar 

  50. J. Wilcox, R. Brown June, H. Kelley Jr, R. Kelley Jr, The retardation of drop breakup in high-velocity airstreams by polymeric modifiers. J. Appl. Polym. Sci. 5(13), 1–6 (1961)

    Google Scholar 

  51. J. Matta, R. Tytus, Viscoelastic breakup in a high velocity airstream. J. Appl. Polym. Sci. 27(2), 397–405 (1982)

    Google Scholar 

  52. J.E. Matta, R.P. Tytus, J.L. Harris, Aerodynamic atomization of polymeric solutions. Chem. Eng. Commun. 19(4–6), 191–204 (1983)

    Google Scholar 

  53. C. Arcoumanis, L. Khezzar, D. Whitelaw, B. Warren, Breakup of Newtonian and non-Newtonian fluids in air jets. Exp. Fluids 17(6), 405–414 (1994)

    Google Scholar 

  54. D. Joseph, G. Beavers, T. Funada, Rayleigh–Taylor instability of viscoelastic drops at high weber numbers. J. Fluid Mech. 453, 109–132 (2002)

    ADS  MATH  Google Scholar 

  55. H. Zhao, Y.-B. Hou, H.-F. Liu, X.-S. Tian, J.-L. Xu, W.-F. Li, Y. Liu, F.-Y. Wu, J. Zhang, K.-F. Lin, Influence of rheological properties on air-blast atomization of coal water slurry. J. Nonnewton. Fluid Mech. 211, 1–15 (2014)

    Google Scholar 

  56. C.L. Ng, T.G. Theofanous, Modes of aero-breakup with visco-elastic liquids. In: AIP Conference Proceedings, vol. 1027, pp. 183–185. American Institute of Physics (2008)

  57. V. Mitkin, T. Theofanous, The physics of aerobreakup. IV. Strain-thickening liquids. Phys. Fluids 29(12), 122101 (2017)

    ADS  Google Scholar 

  58. S. Sharma, R. Pinto, A. Saha, S. Chaudhuri, S. Basu, On secondary atomization and blockage of surrogate cough droplets in single-and multilayer face masks. Sci. Adv. 7(10), 0452 (2021)

    ADS  Google Scholar 

  59. S.P. Lin, R.D. Reitz, Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30(1), 85–105 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  60. M. Vadivukkarasan, K. Dhivyaraja, M.V. Panchagnula, Breakup morphology of expelled respiratory liquid: from the perspective of hydrodynamic instabilities. Phys. Fluids 32(9), 094101 (2020)

    ADS  Google Scholar 

  61. D. Roy, A. Rasheed, P. Kabi, A.S. Roy, R. Shetty, S. Basu, Fluid dynamics of droplet generation from corneal tear film during non-contact tonometry in the context of pathogen transmission. Phys. Fluids 33(9), 092109 (2021)

    ADS  Google Scholar 

  62. H. Zhao, H.-F. Liu, J.-L. Xu, W.-F. Li, Secondary breakup of coal water slurry drops. Phys. Fluids 23(11), 113101 (2011)

    ADS  Google Scholar 

  63. Z.-Y. Wang, H. Zhao, W.-F. Li, J.-L. Xu, H.-F. Liu, Secondary breakup of shear thickening suspension drop. Phys. Fluids 33(9), 093103 (2021)

    ADS  Google Scholar 

  64. J.C. Thompson, J.P. Rothstein, The atomization of viscoelastic fluids in flat-fan and hollow-cone spray nozzles. J. Nonnewton. Fluid Mech. 147(1–2), 11–22 (2007)

    Google Scholar 

  65. Z. Liu, G. Brenn, F. Durst, Linear analysis of the instability of two-dimensional non-Newtonian liquid sheets. J. Non-Newton. Fluid Mech. 78(2–3), 133–166 (1998)

    MATH  Google Scholar 

  66. C. Wang, L.-J. Yang, L. Xie, P.-M. Chen, Weakly nonlinear instability of planar viscoelastic sheets. Phys. Fluids 27(1), 013103 (2015)

    ADS  Google Scholar 

  67. D. Dasgupta, S. Sharma, S. Nath, D. Bhanja, Effects of elasticity number and time constant ratio on breakup and droplet formation of viscoelastic planar liquid sheet co-flowing with gases of equal velocities. J. Fluid Mech. 920 (2021)

  68. S.L. Goren, M. Gottlieb, Surface-tension-driven breakup of viscoelastic liquid threads. J. Fluid Mech. 120, 245–266 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  69. A.-C. Ruo, F. Chen, C.-A. Chung, M.-H. Chang, Three-dimensional response of unrelaxed tension to instability of viscoelastic jets. J. Fluid Mech. 682, 558–576 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  70. L.-J. Yang, M.-X. Tong, Q.-F. Fu, Instability of viscoelastic annular liquid sheets subjected to unrelaxed axial elastic tension. J. Non-Newton. Fluid Mech. 198, 31–38 (2013)

    Google Scholar 

  71. L. Xie, L.-J. Yang, Q.-F. Fu, L.-Z. Qin, Effects of unrelaxed stress tension on the weakly nonlinear instability of viscoelastic sheets. Phys. Fluids 28(10), 104104 (2016)

    ADS  Google Scholar 

  72. S. Markus, U. Fritsching, K. Bauckhage, Jet break up of liquid metal in twin fluid atomisation. Mater. Sci. Eng. A 326(1), 122–133 (2002)

    Google Scholar 

  73. N. Hussary, J. Heberlein, Atomization and particle–jet interactions in the wire-arc spraying process. J. Therm. Spray Technol. 10(4), 604–610 (2001)

    ADS  Google Scholar 

  74. D.R. Guildenbecher, M.A. Cooper, W. Gill, H.L. Stauffacher, M.S. Oliver, T.W. Grasser, Quantitative, three-dimensional imaging of aluminum drop combustion in solid propellant plumes via digital in-line holography. Opt. Lett. 39(17), 5126–5129 (2014)

    ADS  Google Scholar 

  75. D. Rader, D. Benson, Aerosol production by high-velocity molten-metal droplets. Technical report, Sandia National Labs., Albuquerque, NM (USA) (1988)

  76. S. Kondo, K. Konishi, M. Isozaki, S. Imahori, A. Furutani, D. Brear, Experimental study on simulated molten jet–coolant interactions. Nucl. Eng. Des. 155(1–2), 73–84 (1995)

    Google Scholar 

  77. S. Sarkar, P. Sivaprasad, S. Bakshi, Numerical modeling and prediction of particle size distribution during gas atomization of molten tin. At. Sprays 26(1) (2016)

  78. Y. Chen, J.L. Wagner, P.A. Farias, E.P. DeMauro, D.R. Guildenbecher, Galinstan liquid metal breakup and droplet formation in a shock-induced cross-flow. Int. J. Multiph. Flow 106, 147–163 (2018)

    Google Scholar 

  79. M. Arienti, M. Ballard, M. Sussman, Y.C. Mazumdar, J.L. Wagner, P.A. Farias, D.R. Guildenbecher, Comparison of simulation and experiments for multimode aerodynamic breakup of a liquid metal column in a shock-induced cross-flow. Phys. Fluids 31(8), 082110 (2019)

    ADS  Google Scholar 

  80. T. Hopfes, Z. Wang, M. Giglmaier, N.A. Adams, Experimental investigation of droplet breakup of oxide-forming liquid metals. Phys. Fluids 33(10), 102114 (2021)

    ADS  Google Scholar 

  81. T. Hopfes, J. Petersen, Z. Wang, M. Giglmaier, N.A. Adams, Secondary atomization of liquid metal droplets at moderate weber numbers. Int. J. Multiph. Flow 143, 103723 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The support of research by IGSTC (Indo-German Science and Technology Center) through project no. SP/IGSTC-18-0003 is thankfully acknowledged. NKC acknowledge funding from Prime Minister Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saptarshi Basu or Aloke Kumar.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Chandra, N.K., Basu, S. et al. Advances in droplet aerobreakup. Eur. Phys. J. Spec. Top. 232, 719–733 (2023). https://doi.org/10.1140/epjs/s11734-022-00653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00653-z

Navigation