Skip to main content
Log in

Magnetorheological effect in dense magnetic polymers

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We present results of experimental and theoretical study of the effect of external magnetic field on elastic properties of dense soft magnetic polymers filled with micron-sized magnetizable particles. The samples were cured without a magnetic field, thus with isotropic internal morphology of the particles disposition. Experiments demonstrate that under quite moderate magnetic fields the shear elastic modulus of the studied composites increased more than two orders of magnitudes. Decrease in the modulus with the value of the global shear deformation is detected. We explain these effects by adhesive isotropic agglomeration of the particles, at the stage of the composite polymerization. Under magnetic field, these agglomerates are magnetized and aggregate into chains, oriented in the field direction. The chain length is determined by competition between magnetic attraction of the agglomerates and the host medium elastic resistance to their translocation. Theoretical results of the proposed model quantitatively reproduce data’s of measurements of the composite elastic modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.J. Liao, X.L. Gong, S.H. Xuan, Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23(1), 25–33 (2012)

    Article  Google Scholar 

  2. G. Hu, M. Guo, W. Li, H. Du, G. Alici, Experimental investigation of the vibration characteristics of a magnetorheological elastomer sandwich beam under non-homogeneous small magnetic fields. Smart Mater. Struct. 20(12), 1–7 (2011)

    Article  Google Scholar 

  3. S. Sun, H. Deng, J. Yang, W. Li, H. Du, G. Alici, Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes. J. Intell. Mater. Syst. Struct. 26(14), 1757–1763 (2015)

    Article  Google Scholar 

  4. D. Borin, G. Stepanov, V. Mikhailov, A. Gorbunov, The damping device based on magnetoactive elastomer. Magnetohydrodynamics 43, 437–443 (2007)

    Article  ADS  Google Scholar 

  5. S.A. Demchuk, V.A. Kuz’min, Viscoelastic properties of magnetorheological elastomers in the regime of dynamic deformation. J. Eng. Phys. Thermophys. 75(2), 396–400 (2002)

    Article  Google Scholar 

  6. C. Bellan, G. Bossis, 2002 Field dependence of viscoelastic properties of MR elastomers. Int. J. Mod. Phys. B 16, 2447–2453 (2002)

    Article  ADS  Google Scholar 

  7. G.Y. Zhou, 2003 Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 12, 139–146 (2003)

    Article  ADS  Google Scholar 

  8. M.R. Jolly, J.D. Carlson, B.C. Munoz, T.A. Bullions, 1996 The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct. 7, 613–622 (1996)

    Article  Google Scholar 

  9. B. Schrittesser, Z. Major, G. Filipcsei, Characterization of the dynamic mechanical behavior of magneto-elastomers. J. Phys.: Conf. Ser. 2009(149), 012096 (2009)

  10. G.V. Stepanov, D.Yu. Borin, Yu.L. Raikher, P.V. Melenev, N.S. Perov, Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys.: Condens. Matter 20, 204121 (2008)

  11. D. Borin, G. Stepanov, S. Odenbach, Tuning the tensile modulus of magnetorheological elastomers with magnetically hard powder. J. Phys.: Conf. Ser. 412, 012040 (2013)

  12. D. Borin, G. Stepanov, E. Dohmen, Hybrid magnetoactive elastomer with a soft matrix and mixed powder. Arch. Appl. Mech. 89, 105–117 (2019)

    Article  ADS  Google Scholar 

  13. D. Borin, G. Stepanov, A. Musikhin, A. Zubarev, A. Bakhtiiarov, P. Storozhenko, Magnetorheological effect of Magnetoactive Elastomer with a Permalloy Filler. Polymers 12, 2371 (2020)

    Article  Google Scholar 

  14. M.T. Lopez-Lopez, DYu. Borin, AYu. Zubarev, Shear elasticity of isotropic magnetic gels. Phys. Rev. E 96, 022605 (2017)

    Article  ADS  Google Scholar 

  15. C. Gila-Vilchez, J.D.G. Duran, F. Gonzalez-Caballero, A. Zubarev, M.T. Lopez-Lopez, Magnetorheology of alginate ferrogels. Smart Mater. Struct. 28(3), 1083 (2019)

    Article  Google Scholar 

  16. C. Gila-Vilchez, A.B. Bonhome-Espinosa, P. Kuzhir, A. Zubarev, J.D.G. Duran, M.T. Lopez-Lopez, Rheology of magnetic alginate hydrogels. J. Rheol. 62, 1083–96 (1993)

    Article  ADS  Google Scholar 

  17. S. Rose, A. Prevoteau, P. Elziere, D. Hourdet, D. Marcellan, L. Leibler, Nanoparticle solutions as adhesives for gels and biological tissues. Nature 505, 382–385 (2013)

    Article  ADS  Google Scholar 

  18. M. Nvek, A. Zahoranova, M. Mrlik, P. Sramkova, A. Minarik, M. Sedlacik, Poly(2-oxazoline)-based magnetic hydrogels: synthesis, performance and cytotoxicity. Colloids Surf. B Biointerfaces 190, 110912 (2020)

  19. H. See, M. Doi, J. Phys. Soc. Jpn. 1991(60), 2778 (1991)

    Article  ADS  Google Scholar 

  20. A.Y. Zubarev, D.N. Chirikov, D.Y. Borin, G.V. Stepanov, Hysteresis of the magnetic properties of soft magnetic gels. Soft Matter 12, 6473–80 (2016)

  21. T. L. Hill, Statistical Mechanics – Principles and Selected Applications, Courier Corporatiopn, (2013)

  22. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, New York, 1960)

    MATH  Google Scholar 

  23. D. Jiles, Introduction to Magnetic materials (Chapman and Hill, London, 1991)

    Book  Google Scholar 

  24. R.M. Bozorth, Ferromagnetism (Wiley, New York, 1993)

    Book  Google Scholar 

  25. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, New York, 1985)

    Google Scholar 

  26. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1986)

    Google Scholar 

  27. V.N. Pokrovskii, Statistical Mechanics of Dilute Suspensions (Nauka, Moscow, 1978)

    Google Scholar 

  28. I.M. Krieger, T.J.A. Dougherty, mechanism for non-Newtonian flow in suspension of rigid spheres. Trans. Soc. Rheol. 3, 137–52 (1959)

    Article  Google Scholar 

  29. H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)

    MATH  Google Scholar 

  30. G. Batchelor, The stress generated in a non-dilute suspension of elongated particles by pure straining motion. J. Fluid Mech. 46, 813–29 (1971)

    Article  ADS  Google Scholar 

  31. A.R. Payne, The dynamic properties of carbon black-loaded natural rubber vulcanizates: Part I. J. Appl. Polym. Sci. 6, 57–63 (1962)

    Article  Google Scholar 

Download references

Acknowledgements

A.M. and A.Z. thank the Russian Fund of Fundamental Investigation, Grants 19-31-90003; 19-52-45001; 21-52-12013 and as well as the Program of the Ministry of Science and Education of Russian Federation, project FEUZ-2020-0051. D.B. is grateful to the Deutsche Forschungsgemeinschaft (DFG) under Grant Bo 3343/3-1 within PAK 907. GS thanks the Russian Fund of Fundamental Investigation, Grant 19-53-12039

Author information

Authors and Affiliations

Authors

Appendix A

Appendix A

The shape factors \(\alpha (n),...\) introduced in Eq. (26), are [66]:

$$\begin{aligned}&\alpha =\frac{1}{n\alpha _{0}^{'}}\\&\beta =\frac{2\left( n^{2}-1 \right) }{n\left( n^{2}\alpha _{0}+\beta _{0} \right) }\\&\xi =\frac{4}{n\left( n^{2}+1 \right) \beta _{0}^{'}}-\frac{2}{n\alpha _{0}^{'}}\\&\chi =\frac{2\alpha _{0}^{''}}{n\alpha _{0}^{'}\beta _{0}^{''}}-\frac{8}{n\beta _{0}^{'}\left( n^{2}+1 \right) }+\frac{2}{n\alpha _{0}^{'}}\\&\lambda _{n}=\frac{n^{2}-1}{n^{2}+1}, \end{aligned}$$

where

$$\begin{aligned} \alpha _{0}= & {} -\frac{1}{n^{2}-1}\left[ \frac{2}{n}+\frac{1}{\sqrt{n^{2}-1} }\ln \left( 2n^{2}-1-2n\sqrt{n^{2}-1} \right) \right] \\ \beta _{0}= & {} \frac{1}{n^{2}-1}\left[ n-\frac{1}{2\sqrt{n^{2}-1} }\ln \left( 2n^{2}-1+2n\sqrt{n^{2}-1} \right) \right] \\ \alpha _{0}^{'}= & {} \frac{1}{4\left( n^{2}-1 \right) ^{2}}\left[ n\left( 2{rn}^{2}-5 \right) \right. \\&\quad \left. -\frac{3}{2\sqrt{n^{2}-1} }\ln \left( 2n^{2}-1-2n\sqrt{n^{2}-1} \right) \right] \\ \beta _{0}^{'}= & {} \frac{1}{\left( n^{2}-1 \right) ^{2}}\left[ \frac{n^{2}+2}{n}\right. \\&\left. -\frac{3}{2\sqrt{n^{2}-1} }\ln \left( 2n^{2}-1+2n\sqrt{n^{2}-1} \right) \right] \\ \alpha _{0}^{''}= & {} \frac{1}{4\left( n^{2}-1 \right) ^{2}}\left[ n\left( 2n^{2}+1 \right) \right. \\&\left. -\frac{4n^{2}-1}{2\sqrt{n^{2}-1} }\ln \left( 2n^{2}-1+2n\sqrt{n^{2}-1} \right) \right] \\ \beta _{0}^{''}= & {} -\frac{1}{\left( n^{2}-1 \right) ^{2}}\left[ 3n+\frac{2n^{2}+1}{2\sqrt{n^{2}-1} }\ln \right. \\&\times \left. \left( 2n^{2}-1-2n\sqrt{n^{2}-1} \right) \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borin, D., Stepanov, G., Musikhin, A. et al. Magnetorheological effect in dense magnetic polymers. Eur. Phys. J. Spec. Top. 231, 1165–1173 (2022). https://doi.org/10.1140/epjs/s11734-022-00516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00516-7

Navigation