Skip to main content
Log in

Investigation for mixed convection flow of physiological fluid due to non-uniform vertical complex channel with entropy generation effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A theoretical mathematical model has been proposed to analyze the combined heat and mass transfer impact due to peristaltic flow of Carreau-Yasuda nanofluid model. The flow is causing by non-uniform complex wavy channel with convergent and divergent characterization. The analysis is updated with applications of entropy generation applications. The investigation for enhancement in heat transfer is visualized by adopting the nonlinear radiated impact. Furthermore, the mixed convection and activation energy effects. Both surfaces of non-uniform channel are specified at distinct zeta potential. The utilization of governing theories along with the Poisson Boltzmann equation have been incorporated to model the problem. The simplification of problem is incorporated via Debye–Huckel linearization. The numerical method based on shooting technique is suggested to simulates the problem. The physical characteristics of flow problem in view of involved parameters is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on a reasonable request.

Abbreviations

\({\overline{E}}_{\overline{{\text{X}}}}\) :

Axial electric field

\(\overline{C}\) :

Nanoparticle concentration

\({\in }_{1}\) :

Dielectric constant

\({\text{Sh}}\) :

Sherwood number

\({C}_{0},{C}_{1}\) :

Concentration at walls

\(v\) :

Radial (transverse) velocity component in dimensionless form

\({D}_{{\text{B}}}\) :

Brownian diffusion coefficient

\(\overline{P}\) :

Pressure in wave frame

\({D}_{{\text{c}}}\) :

Diffusivity of chemical species

\(y\) :

Transverse coordinate in dimensionless form

\({E}_{S}\) :

Entropy generation number

\({\text{We}}\) :

Weissenberg number

\({K}_{{\text{B}}}\) :

Boltzmann constant

\(\Phi \) :

Phase difference

\({S}_{\mathrm{i j}},\mathrm{ i},{\text{j}}=\mathrm{1,2},3\) :

Extra stress tensor

\({\xi }_{1},{\xi }_{2}\) :

Zeta potentials at walls

\(\overline{U}\) :

Axial velocity component in wave frame

\({\text{Nu}}\) :

Nusselt number

\(\overline{X}\) :

Axial coordinate in wave frame

\({U}_{{\text{hs}}}\) :

Helmholtz-Smoluchowski velocity

\({e}_{{\text{i}}},{\text{i}}=\mathrm{1,2},\mathrm{3,4}\) :

Amplitude of the peristaltic wave

\({a}_{1},{a}_{2}\) :

Half widths of the channel

\(\overline{t}\) :

Time

\(\overline{T}\) :

Temperature

\({\lambda }_{{\text{d}}}\) :

Debye-length of electric double layer

\({C}_{{\text{p}}}\) :

Specific heat capacity of nano-particles

\({\rho }_{{\text{e}}}\) :

Density of net ionic energy

\({C}_{{\text{f}}}\) :

Specific heat capacity of fluid

\({\rho }_{{\text{f}}}\) :

Fluid density

\({R}_{\upxi }\) :

Zeta potential ratio parameter

\({\text{Gr}}\) :

Thermal Grashof number

\({\text{Gc}}\) :

Concentration Grashof number

\({\sigma }_{{\text{e}}}\) :

Electric conductivity

\({H}_{1},{H}_{2}\) :

Lower and upper walls

\({\text{Be}}\) :

Bejan number

\({\text{Br}}\) :

Brinkman number

\(n\) :

Power law index

\({\text{Ec}}\) :

Eckert number

\(\overline{Y}\) :

Transverse coordinate in wave frame

\({\text{Nb}}\) :

Brownian motion parameter

\(\overline{V}\) :

Radial (transverse) velocity component in wave frame

\({\text{Nt}}\) :

Dimensionless Thermophoresis parameter

\({D}_{{\text{T}}}\) :

Thermophoresis diffusion coefficient

\(T{\prime}\) :

Averaging temperature of electrolyte

\(S\) :

Joule heating parameter

\(e\) :

Electronic charge

\(\delta \) :

Wave number

\(k\) :

Electro-osmotic parameter

\({h}_{1},{h}_{2}\) :

Lower and upper walls in dimensionless form

\(u\) :

Axial velocity component in dimensionless form

\({\text{Pe}}\) :

Peclet number

\(x\) :

Axial coordinate in dimensionless form

\({T}_{{\text{m}}}\) :

Mean temperature of fluid

\(z\) :

Charge balance

\({\text{Re}}\) :

Reynolds number

\(\alpha \) :

Dimensionless fluid parameter

\({T}_{0},{T}_{1}\) :

Temperature at walls

\({\text{Rd}}\) :

Thermal radiation parameter

\(\Omega \) :

Temperature ratio parameter

\(\theta \) :

Dimensionless temperature

\({K}_{f}\) :

Thermal conductivity

\(E\) :

Dimensionless potential distribution

\(\psi \) :

Steam fuction

\(\phi \) :

Dimensionless concentration

\(F\) :

Flow rate in wave frame

\({K}_{r}\) :

Chemical reaction parameter

\({E}_{\alpha }\) :

Activation energy parameter

References

  1. M.D. Sinnott, P.W. Cleary, S.M. Harrison, Peristaltic transport of a particulate suspension in the small intestine. Appl. Math. Model. 44, 143–159 (2017)

    Article  Google Scholar 

  2. D. Tripathi, A. Yadav, O.A. Bég, Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling. Math. Biosci. 283, 155–168 (2017)

    Article  MathSciNet  Google Scholar 

  3. K. Javid, S.U.D. Khan, S.U.D. Khan, M. Hassan, A. Khan, S.A. Alharbi, Mathematical modeling of magneto-peristaltic propulsion of a viscoelastic fluid through a complex wavy non-uniform channel: an application of hall device in bio-engineering domains. Eur. Phys. J. Plus 136, 1–31 (2021)

    Google Scholar 

  4. S. Akram, M. Athar, K. Saeed, A. Razia, Influence of an induced magnetic field on double diffusion convection for peristaltic flow of thermally radiative Prandtl nanofluid in non-uniform channel. Tribol. Int. 187, 108719 (2023)

    Article  Google Scholar 

  5. H.A. Hosham, Esraa N. Thabet, A.M. Abd-Alla, S.M.M. El-Kabeir, Dynamic patterns of electroosmosis peristaltic flow of a Bingham fluid model in a complex wavy microchannel. Sci. Reports 13(1), 8686 (2023)

    ADS  Google Scholar 

  6. A. Abbasi, Sami Ullah Khan, W. Farooq, F.M. Mughal, M. Ijaz Khan, B.C. Prasannakumara, Mohamed Tarek El-Wakad, Kamel Guedri, Ahmed M. Galal, Peristaltic flow of chemically reactive Ellis fluid through an asymmetric channel: Heat and mass transfer analysis. Ain Shams Eng. J. 14(1), 101832 (2023)

    Article  Google Scholar 

  7. Y. Elmhedy, A.M. Abd-Alla, S.M. Abo-Dahab, F.M. Alharbi, M.A. Abdelhafez, Influence of inclined magnetic field and heat transfer on the peristaltic flow of Rabinowitsch fluid model in an inclined channel. Sci. Rep. 14(1), 4735 (2024)

    Article  Google Scholar 

  8. H. Yu, H. Wang, Z. Lian, An assessment of seal ability of tubing threaded connections: a hybrid empirical-numerical method. J. Energy Resour. Technol. (2022). https://doi.org/10.1115/1.4056332

    Article  Google Scholar 

  9. Mohammad Alqudah, Arshad Riaz, Muhammad Naeem Aslam, Mehpara Shehzadi, Muhammad Waheed Aslam, Nadeem Shaukat, Ghaliah Alhamzi, Thermal and mass exchange in a multiphase peristaltic flow with electric-debye-layer effects and chemical reactions using machine learning. Case Studies Therm. Eng. 56, 104234 (2024)

    Article  Google Scholar 

  10. M.M. Ahmed, I.M. Eldesoky, Ahmed G. Nasr, Ramzy M. Abumandour, Sara I. Abdelsalam, The profound effect of heat transfer on magnetic peristaltic flow of a couple stress fluid in an inclined annular tube. Modern Phys. Lett. B (2024). https://doi.org/10.1142/S0217984924502336

    Article  Google Scholar 

  11. E. Ragupathi, D. Prakash, M. Muthtamilselvan, Qasem M. Al-Mdallal, A case study on heat transport of electrically conducting water based-CoFe2O4 ferrofluid flow over the disk with various nanoparticle shapes and highly oscillating magnetic field. J. Magn. Magn. Mater. 589, 171624 (2024)

    Article  Google Scholar 

  12. A. Renuka, M. Muthtamilselvan, Deog-Hee. Doh, Gyeong-Rae. Cho, Effects of homogeneous-heterogeneous reactions in flow of nanofluid between two stretchable rotating disks. Eur. Phys. J. Special Top. 228, 2661–2676 (2019)

    Article  ADS  Google Scholar 

  13. E. Ragupathi, D. Prakash, M. Muthtamilselvan, Kyubok Ahn, Entropy analysis of Casson nanofluid flow across a rotating porous disk with nonlinear thermal radiation and magnetic dipole. Int. J. Modern Phys. B 37(26), 2350308 (2023)

    Article  ADS  Google Scholar 

  14. M. Ajithkumar, Pallavarapu Lakshminarayana, Kuppalapalle Vajravelu, Diffusion effects on mixed convective peristaltic flow of a bi-viscous Bingham nanofluid through a porous medium with convective boundary conditions. Phys. Fluids (2023). https://doi.org/10.1063/5.0142003

    Article  Google Scholar 

  15. E.N. Maraj, Noreen Sher Akbar, I. Zehra, A.W. Butt, Huda Ahmed Alghamdi, Electro-osmotically modulated magneto hydrodynamic peristaltic flow of menthol based nanofluid in a uniform channel with shape factor. J. Magn. Magn. Mater. 576, 170774 (2023)

    Article  Google Scholar 

  16. S. Akram, K. Saeed, M. Athar, A. Razia, A. Hussain, I. Naz, Convection theory on thermally radiative peristaltic flow of Prandtl tilted magneto nanofluid in an asymmetric channel with effects of partial slip and viscous dissipation. Mater. Today Commun. 35, 106171 (2023)

    Article  Google Scholar 

  17. Aamir Ali, M. Sunila Malik, A.S. Awais, Alqahtani, M.Y. Malik, MHD peristaltic flow of hybrid nanomaterial between compliant walls with slippage and radiation. J. Molecul. Liquids 393, 123619 (2024)

    Article  Google Scholar 

  18. Bilal Ahmed, Zahid Nisar, M. Ahmed, E.I. Sherbeeny, Numerical study for MHD peristaltic flow of nanofluid with variable viscosity in the porous channel. ZAMM-J. Appl. Math. Mech/Z. für Angew. Math. Mech. 104(3), e202300694 (2024)

    Article  MathSciNet  Google Scholar 

  19. A. Tanveer, I. Rasheed, S. Jarral, Peristaltic flow of Williamson nanofluid on a rough surface. Adv. Mech. Eng. 16(1), 16878132231222792 (2024)

    Article  Google Scholar 

  20. Jagadesh Vardagala, Sreenadh Sreedharamalle, Ajithkumar Moorthi, Sucharitha Gorintla, Lakshminarayana Pallavarapu, Hydromagnetic peristaltic flow of convective Casson nanofluid through a vertical porous channel under the influence of Ohmic heating and viscous dissipation effects. World J. Eng. (2024). https://doi.org/10.1108/WJE-10-2023-0455

    Article  Google Scholar 

  21. M.M. Abdelmoneim, N.T. Eldabe, M.Y. Abouzeid, M.E. Ouaf, Electro-osmotic peristaltic flow of non-Newtonian Sutterby TiO2 nanofluid inside a microchannel through porous medium with modified Darcy’s law. Modern Phys. Lett. B (2024). https://doi.org/10.1142/S0217984924502397

    Article  Google Scholar 

  22. T. Hayat, S. Nazir, S. Farooq, A. Alsaedi, S. Momani, Impacts of entropy generation in radiative peristaltic flow of variable viscosity nanomaterial. Comput. Biol. Med. 155, 106699 (2023)

    Article  Google Scholar 

  23. Ambreen A. Khan, B. Zahra, Rahmat Ellahi, Sadiq M. Sait, Analytical solutions of peristalsis flow of non-Newtonian Williamson fluid in a curved micro-channel under the effects of electro-osmotic and entropy generation. Symmetry 15(4), 889 (2023)

    Article  ADS  Google Scholar 

  24. Arooj Tanveer, Muhammad Bilal Ashraf, Maryam Masood, Entropy analysis of peristaltic flow over curved channel under the impact of MHD and convective conditions. Numer. Heat Transf. Part B: Funda. 85(1), 45–57 (2024)

    Article  ADS  Google Scholar 

  25. H.A. Sayed, M.Y. Abouzeid, Radially varying viscosity and entropy generation effect on the Newtonian nanofluid flow between two co-axial tubes with peristalsis. Sci. Rep. 13(1), 11013 (2023)

    Article  ADS  Google Scholar 

  26. D.L. Mahendra, J.U. Viharika, V. Ramanjini, O.D. Makinde, U.B. Vishwanatha, Entropy analysis on the bioconvective peristaltic flow of gyrotactic microbes in Eyring-Powell nanofluid through an asymmetric channel. J. Indian Chem. Soc. 100(3), 100935 (2023)

    Article  Google Scholar 

  27. Noreen Sher Akbar, M. Javaria Akram, E.N. Fiaz Hussain, Maraj, Taseer Muhammad., Thermal storage study and enhancement of heat transfer through hybrid Jeffrey nanofluid flow in ducts under peristaltic motion with entropy generation. Therm. Sci. Eng. Progress 49, 102463 (2024)

    Article  Google Scholar 

  28. D. Xiao, M. Liu, L. Li, X. Cai, S. Qin, R. Gao, G. Li, Model for economic evaluation of closed-loop geothermal systems based on net present value. Appl. Therm. Eng. 231, 121008 (2023)

    Article  Google Scholar 

  29. S. Yang, Y. Zhang, Z. Sha, Z. Huang, H. Wang, F. Wang, J. Li, Deterministic Manipulation of Heat Flow via Three-Dimensional-Printed Thermal Meta-Materials for Multiple Protection of Critical Components. ACS Appl. Mater. Interfaces 14(34), 39354–39363 (2022)

    Article  Google Scholar 

  30. L. Sun, T. Liang, C. Zhang, J. Chen, The rheological performance of shear-thickening fluids based on carbon fiber and silica nanocomposite. Phys. Fluids 35(3), 32002 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ijaz Khan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest from this submission.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Abbasi, A., Khan, S.U. et al. Investigation for mixed convection flow of physiological fluid due to non-uniform vertical complex channel with entropy generation effects. Eur. Phys. J. Plus 139, 349 (2024). https://doi.org/10.1140/epjp/s13360-024-05123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05123-0

Navigation