Skip to main content
Log in

Electro-optical properties of solution-processed aluminum–nickel oxide film containing graphene oxide in liquid crystal system

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Aluminum–nickel oxide and graphene oxide hybrid films are investigated in this study. The films produced via solution processing were doped with GO at three concentrations: 0, 5, and 15 wt%. The optical transmittances of the produced hybrid AlNiO films were examined for liquid crystal device applications, and their chemical properties were assessed via X-ray photoelectron spectroscopy. Atomic force microscopy and line profiling were used to examine the film surfaces. Polarized optical microscopy and pretilt angle analysis were used to confirm the uniform and homogeneous LC alignment on the hybrid AlNiO layer. The anisotropic oriented nano/microgroove structures on the surfaces of the films are believed to be due to the shear stress generated by the brush-coating process. LC cells assembled using the hybrid films showed stabler and faster switching performances with increasing GO doping. GO doping of the pure AlNiO film was also noted to increase the LC polar anchoring energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The raw/processed data required to reproduce these findings are available from the corresponding authors upon reasonable request. The manuscript has associated data in a data repository.

References

  1. X. Li, W.C.H. Choy, L. Huo, F. Xie, W.E.I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv. Mater. 24, 3046 (2012). https://doi.org/10.1002/adma.201200120

    Article  ADS  Google Scholar 

  2. S.D. Ponja, B.A.D. Williamson, S. Sathasivam, D.O. Scanlon, I.P. Parkin, C.J. Carmalt, Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J. Mater. Chem. C. 6, 7257 (2018). https://doi.org/10.1039/c8tc01929k

    Article  Google Scholar 

  3. Y.S. Oh, K.H. Lee, H. Kim, D.Y. Jeon, S.H. Ko, C.P. Grigoropoulos, H.J. Sung, Direct micro/nano patterning of multiple colored quantum dots by large area and multilayer imprinting. J. Phys. Chem. C 116, 11728 (2012). https://doi.org/10.1021/jp301397t

    Article  Google Scholar 

  4. U.N. Tohgha, E.P. Crenshaw, M.E. McConney, K.M. Lee, N.P. Godman, Tuning of optical properties and phase behavior of nanomaterial-stabilized blue phase liquid crystals. J. Colloid Interface Sci. 639, 401 (2023). https://doi.org/10.1016/j.jcis.2023.02.076

    Article  ADS  Google Scholar 

  5. H. Zhou, S. Zheng, X. Guo, Y. Gao, H. Li, H. Pang, Ordered porous and uniform electric-field-strength micro-supercapacitors by 3D printing based on liquid-crystal V2O5 nanowires compositing carbon nanomaterials. J. Colloid Interface Sci. 628, 24 (2022). https://doi.org/10.1016/j.jcis.2022.08.043

    Article  Google Scholar 

  6. N.K .Chaudhari, A. Oh, Y.J. Sa, H. Jin, H. Baik, S.G. Kim, S.J. Lee, S.H. Joo, K. Lee, Morphology controlled synthesis of 2-d Ni–Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction. Nano Converg. 4, 7 (2017). https://doi.org/10.1186/s40580-017-0101-6

    Article  Google Scholar 

  7. K. Yu, Z. Zhang, Y. Zhao, J. Wang, W. Huang, Z. Mo, Y. Chen, K. Wang, X. Liu, Z. Cao, J. Shao, Optical properties and nanosecond laser damage characterization of liquid crystal polarization gratings. Opt. Mater. 147, 114755 (2024). https://doi.org/10.1016/j.optmat.2023.114755

    Article  Google Scholar 

  8. C.P. Ganea, D. Manaila-Maximean. V. Cîrcu, Dielectric investigations on carbon nanotubes doped polymer dispersed liquid crystal films. Eur. Phys. J. Plus 135, 797 (2020). https://doi.org/10.1140/epjp/s13360-020-00795-w

    Article  Google Scholar 

  9. M. Surekha, D.M. Potukuchi, Exploration of Goldstone mode and field-induced SmA-SmC*-SmC Lifshitz point in chiral liquid crystal dimers for multiple polarization switching. Eur. Phys. J. Plus 137, 656 (2022). https://doi.org/10.1140/epjp/s13360-022-02728-1

    Article  Google Scholar 

  10. M. Honma, T. Otsuka, R. Ito, S. Pau, T. Nose, Alignment of semiconducting liquid crystalline polymers induced by hot stylus rubbing. Jpn. J. Appl. Phys. 63, 3 (2024). https://doi.org/10.35848/1347-4065/ad272b

    Article  Google Scholar 

  11. K.V. Rao, A. Smakula, Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals. J. Appl. Phys. 36, 2031 (1965). https://doi.org/10.1063/1.1714397

    Article  ADS  Google Scholar 

  12. C.W .Chen, H.W. Tsai, Y.C. Wang, Y.C. Shih, T.Y. Su, C.H. Yang, W.S. Lin, C.H. Shen, J.M. Shieh, Y.L. Chueh, Rear-passivated ultrathin Cu(In, Ga)Se2 films by Al2O3 nanostructures using glancing angle deposition toward photovoltaic devices with enhanced efficiency. Adv. Funct. Mater. 29, 1 (2019). https://doi.org/10.1002/adfm.201905040

    Article  Google Scholar 

  13. H. Faber, B. Butz, C. Dieker, E. Spiecker, M. Halik, Fully patterned low-voltage transparent metal oxide transistors deposited solely by chemical spray pyrolysis. Adv. Funct. Mater. 23, 2828 (2013). https://doi.org/10.1002/adfm.201202334

    Article  Google Scholar 

  14. Y.H. Shim, K.E. Lee, T.J. Shin, S.O. Kim, S.Y. Kim, Tailored colloidal stability and rheological properties of graphene oxide liquid crystals with polymer-induced depletion attractions. ACS Nano 12, 11399 (2018). https://doi.org/10.1021/acsnano.8b06320

    Article  Google Scholar 

  15. S.-H. Hong, T.-Z. Shen, J.-K. Song, Electro-optical characteristics of aqueous graphene oxide dispersion depending on ion concentration. J. Phys. Chem. C 118, 26304 (2014). https://doi.org/10.1021/jp504892s

    Article  Google Scholar 

  16. T.-Z. Shen, S.-H. Hong, J.-K. Song, Electro-optical switching of graphene oxide liquid crystals with an extremely large Kerr coefficient. Nat. Mater. 13, 394 (2014). https://doi.org/10.1038/nmat3888

    Article  ADS  Google Scholar 

  17. D.W. Lee, J.H. Lee, E.M. Kim, G.S. Heo, D.H. Kim, J.Y. Oh, Y. Liu, D.-S. Seo, Surface modification of a poly(ethylene-co-vinyl acetate) layer by ion beam irradiation for the uniform alignment of liquid crystals. J. Mol. Liq. 339, 116700 (2021). https://doi.org/10.1016/j.molliq.2021.116700

    Article  Google Scholar 

  18. K.-H. Chen, W.-Y. Chang, J.-H. Chen, Measurement of the pretilt angle and the cell gap of nematic liquid crystal cells by heterodyne interferometry. Opt. Express 17, 14143 (2009). https://doi.org/10.1364/OE.17.014143

    Article  ADS  Google Scholar 

  19. J.-H. Kim, M. Yoneya, J. Yamamoto, H. Yokoyama, Nano-rubbing of a liquid crystal alignment layer by an atomic force microscope: a detailed characterization. Nanotechnology 13, 133 (2002). https://doi.org/10.1088/0957-4484/13/2/301

    Article  ADS  Google Scholar 

  20. C.C. Mell, S.R. Finn, Forces exerted during the brushing of a paint. Rheol. Acta 4, 260 (1965). https://doi.org/10.1007/BF01973663

    Article  Google Scholar 

  21. S.-S. Kim, S.-I. Na, J. Jo, G. Tae, D.-Y. Kim, Efficient polymer solar cells fabricated by simple brush painting. Adv. Mater. 19, 4410 (2007). https://doi.org/10.1002/adma.200702040

    Article  Google Scholar 

  22. Y.J. Cha, D.K. Yoon, Control of periodic zigzag structures of DNA by a simple shearing method. Adv. Mater. 29, 1604247 (2017). https://doi.org/10.1002/adma.201604247

    Article  Google Scholar 

  23. D.W. Berreman, Solid surface shape and the alignment of an adjacent nematic liquid crystal. Phys. Rev. Lett. 28, 1683 (1972). https://doi.org/10.1103/PhysRevLett.28.1683

    Article  ADS  Google Scholar 

  24. J.-I. Fukuda, M. Yoneya, H. Yokoyama, Surface-groove-induced azimuthal anchoring of a nematic liquid crystal: Berreman’s model reexamined. Phys. Rev. Lett. 98, 187803 (2007). https://doi.org/10.1103/PhysRevLett.98.187803

    Article  ADS  Google Scholar 

  25. B. Chae, S.B. Kim, S.W. Lee, S.I. Kim, W. Choi, B. Lee, M. Ree, K.H. Lee, J.C. Jung, Surface morphology, molecular reorientation, and liquid crystal alignment properties of rubbed nanofilms of a well-defined brush polyimide with a fully rodlike backbone. Macromolecules 35, 10119 (2002). https://doi.org/10.1021/ma020639i

    Article  ADS  Google Scholar 

  26. H. Kikuchi, J.A. Logan, D.Y. Yoon, Study of local stress, morphology, and liquid-crystal alignment on buffed polyimide surfaces J. Appl. Phys. 79, 6811 (1996 ). https://doi.org/10.1063/1.361502

    Article  ADS  Google Scholar 

  27. Y. Liu, J.H. Lee, D.-S. Seo, Ion beam fabrication of aluminum-doped zinc oxide layer for high-performance liquid crystals alignment. Opt. Express 24, 17424 (2016). https://doi.org/10.1364/OE.24.017424

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIT) (No. 2022R1F1A106419213). This research was supported by the Research Grant of Jeonju University in 2023.

Author information

Authors and Affiliations

Authors

Contributions

JYO contributed to conceptualization, formal analysis, and writing the original draft. EMK contributed to investigation and validation. GSH and DHK contributed to investigation and visualization. DBY contributed to validation and visualization. BKC contributed to resources and validation.. DWL contributed to formal analysis and supervision. D-SS contributed to funding acquisition and project administration.

Corresponding authors

Correspondence to Dong Wook Lee or Dae-Shik Seo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, J.Y., Kim, E.M., Heo, G.S. et al. Electro-optical properties of solution-processed aluminum–nickel oxide film containing graphene oxide in liquid crystal system. Eur. Phys. J. Plus 139, 309 (2024). https://doi.org/10.1140/epjp/s13360-024-05110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05110-5

Navigation