Skip to main content
Log in

ZnxCd1–xSySe1–y as an effective electron transport layer for improving the efficiency of Sb2S3 and Sb2Se3 thin-film solar cells

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Sb2Se3 and Sb2S3 are two types of thin-film solar cell (TFSC) absorbers that have drawn considerable interest and advanced quickly. These materials have several advantages over conventional TFSCs, such as suitable bandgap, high absorption coefficient, low cost, and simple structure. However, these materials also face challenges due to the interface recombination and energy band alignment with the electron transport layer (ETL). To address these issues, this study proposes the use of ZnxCd1−xSySe1−y as a tunable ETL that can optimize the conduction band offset at the interface with the absorber layer. Using the Solar Cell Capacitance Simulator, this work simulates the device performance for different values of x and y in the ETL and finds the optimal ratios that maximize the efficiency. Sb2Se3 solar cells achieve an efficiency of 18.7%, representing a 3%-point increase compared to Sb2S3 solar cells, which have an efficiency of 15.8%. This study demonstrates the promising potential of Sb2Se3 and Sb2S3 as materials for thin-film solar cells. Additionally, it highlights the effectiveness of ZnxCd1−xSySe1−y as an ETL in enhancing the performance of these solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request].

References

  1. P. Choudhary, R.K. Srivastava, Sustainability perspectives-a review for solar photovoltaic trends and growth opportunities. J. Clean. Prod. 227, 589–612 (2019)

    Article  Google Scholar 

  2. M. Victoria et al., Solar photovoltaics is ready to power a sustainable future. Joule 5(5), 1041–1056 (2021)

    Article  Google Scholar 

  3. M.A. Farhana, A. Manjceevan, J. Bandara, Recent advances and new research trends in Sb2S3 thin film based solar cells. J. Sci. Adv. Mater. Devices 8(1), 100533 (2023)

    Article  Google Scholar 

  4. P.K. Nayak et al., Photovoltaic solar cell technologies: analysing the state of the art. Nat. Rev. Mater. 4(4), 269–285 (2019)

    Article  ADS  Google Scholar 

  5. J.A. Luceño-Sánchez, A.M. Díez-Pascual, C.R. Peña, Materials for photovoltaics: state of art and recent developments Int. J. Mol. Sci. 20(4), 976 (2019)

    Article  Google Scholar 

  6. A.S. Al-Ezzi, M.N.M. Ansari, Photovoltaic solar cells: a review. Appl. Syst. Innov. 5(4), 67 (2022)

    Article  Google Scholar 

  7. H. Lei et al., Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar Rrl 3(6), 1900026 (2019)

    Article  Google Scholar 

  8. C. Chen, K. Li, J. Tang, Ten years of Sb2Se3 thin film solar cells. Solar RRL 6(7), 2200094 (2022)

    Article  Google Scholar 

  9. U.A. Shah et al., Wide bandgap Sb2S3 solar cells. Adv. Func. Mater. 31(27), 2100265 (2021)

    Article  Google Scholar 

  10. A. Mavlonov et al., A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Sol. Energy 201, 227–246 (2020)

    Article  ADS  Google Scholar 

  11. M.F. Rahman et al., Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer. Heliyon 8(12), e12034 (2022)

    Article  Google Scholar 

  12. F.H. Alharbi, S. Kais, Theoretical limits of photovoltaics efficiency and possible improvements by intuitive approaches learned from photosynthesis and quantum coherence. Renew. Sustain. Energy Rev. 43, 1073–1089 (2015)

    Article  Google Scholar 

  13. M.A. Green et al., Solar cell efficiency tables (version 62). Prog. Photovoltaics Res. Appl. 31(7), 651–663 (2023)

    Article  Google Scholar 

  14. R. Raj, R. Singh, M. Guin, Chalcogenide perovskite, an emerging photovoltaic material: current status and future perspectives. ChemistrySelect 8(45), e202303550 (2023)

    Article  Google Scholar 

  15. R. Miles, K. Hynes, I. Forbes, Photovoltaic solar cells: an overview of state-of-the-art cell development and environmental issues. Prog. Cryst. Growth Charact. Mater. 51(1–3), 1–42 (2005)

    Article  Google Scholar 

  16. M. Powalla et al., Advances in cost-efficient thin-film photovoltaics based on Cu (In, Ga)Se2. Engineering 3(4), 445–451 (2017)

    Article  Google Scholar 

  17. M.A. Farhana, J. Bandara, Enhancement of the photoconversion efficiency of Sb2S3 based solar cell by overall optimization of electron transport, light harvesting and hole transport layers. Sol. Energy 247, 32–40 (2022)

    Article  ADS  Google Scholar 

  18. M. Kumar et al., Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8(11), 3134–3159 (2015)

    Article  Google Scholar 

  19. Y. Lai et al., Preparation and characterization of Sb2Se3 thin films by electrodeposition and annealing treatment. Appl. Surf. Sci. 261, 510–514 (2012)

    Article  ADS  Google Scholar 

  20. Y. Zhou et al., Solution-processed antimony selenide heterojunction solar cells. Adv. Energy Mater. 4(8), 1301846 (2014)

    Article  Google Scholar 

  21. O. Madelung, Semiconductors: data handbook (Springer Science & Business Media, Berlin, 2004)

    Book  Google Scholar 

  22. G. Pan et al., Substrate structured Sb2S3 thin film solar cells fabricated by rapid thermal evaporation method. Sol. Energy 182, 64–71 (2019)

    Article  ADS  Google Scholar 

  23. X. Chen et al., CdS/Sb2S3 heterojunction thin film solar cells with a thermally evaporated absorber. J. Mater. Chem. C 5(36), 9421–9428 (2017)

    Article  ADS  Google Scholar 

  24. X. Liu et al., Enhanced open circuit voltage of Sb2Se3/CdS solar cells by annealing Se-rich amorphous Sb2Se3 films prepared via sputtering process. Sol. Energy 195, 697–702 (2020)

    Article  ADS  Google Scholar 

  25. J. Luo et al., Fabrication of Sb2S3 thin films by magnetron sputtering and post-sulfurization/selenization for substrate structured solar cells. J. Alloy. Compd. 826, 154235 (2020)

    Article  Google Scholar 

  26. W. Lin et al., Zn (O, S) buffer layer for in situ hydrothermal Sb2S3 planar solar cells. ACS Appl. Mater. Interfaces 13(38), 45726–45735 (2021)

    Article  Google Scholar 

  27. W. Wang et al., Over 6% certified Sb2 (S, Se)3 solar cells fabricated via in situ hydrothermal growth and postselenization. Adv. Electron. Mater. 5(2), 1800683 (2019)

    Article  Google Scholar 

  28. A. Fernandez, M. Merino, Preparation and characterization of Sb2Se3 thin films prepared by electrodeposition for photovoltaic applications. Thin Solid Films 366(1–2), 202–206 (2000)

    Article  ADS  Google Scholar 

  29. R.A. Garcia et al., Antimony sulfide (Sb2S3) thin films by pulse electrodeposition: effect of thermal treatment on structural, optical and electrical properties. Mater. Sci. Semicond. Process. 44, 91–100 (2016)

    Article  Google Scholar 

  30. J.S. Eensalu et al., Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows. Beilstein J. Nanotechnol. 10(1), 2396–2409 (2019)

    Article  Google Scholar 

  31. K. Rajpure, C. Bhosale, Preparation and characterization of spray deposited photoactive Sb2S3 and Sb2Se3 thin films using aqueous and non-aqueous media. Mater. Chem. Phys. 73(1), 6–12 (2002)

    Article  Google Scholar 

  32. B. Krishnan et al., On the structure, morphology, and optical properties of chemical bath deposited Sb2S3 thin films. Appl. Surf. Sci. 254(10), 3200–3206 (2008)

    Article  ADS  Google Scholar 

  33. D.-H. Kim et al., Highly reproducible planar Sb2S3-sensitized solar cells based on atomic layer deposition. Nanoscale 6(23), 14549–14554 (2014)

    Article  ADS  Google Scholar 

  34. N. Mahuli et al., Atomic layer deposition of an Sb2Se3 photoabsorber layer using selenium dimethyldithiocarbamate as a new Se precursor. Chem. Mater. 31(18), 7434–7442 (2019)

    Article  Google Scholar 

  35. P. Kaienburg, B. Klingebiel, T. Kirchartz, Spin-coated planar Sb2S3 hybrid solar cells approaching 5% efficiency. Beilstein J. Nanotechnol. 9(1), 2114–2124 (2018)

    Article  Google Scholar 

  36. E.K. Gil et al., Spin-coating process of an inorganic Sb2S3 thin film for photovoltaic applications. J. Nanosci. Nanotechnol. 16(10), 10763–10766 (2016)

    Article  Google Scholar 

  37. D.-B. Li et al., Stable and efficient CdS/Sb2Se3 solar cells prepared by scalable close space sublimation. Nano Energy 49, 346–353 (2018)

    Article  Google Scholar 

  38. R. Krautmann et al., Analysis of grain orientation and defects in Sb2Se3 solar cells fabricated by close-spaced sublimation. Sol. Energy 225, 494–500 (2021)

    Article  ADS  Google Scholar 

  39. R. Tang et al., Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nat. Energy 5(8), 587–595 (2020)

    Article  ADS  Google Scholar 

  40. M. Nicolás-Marín et al., Simulation analysis of Cd1-xZnxS/Sb2 (Se1-xSx) 3 solar cells with nip structure. Sol. Energy 224, 245–252 (2021)

    Article  ADS  Google Scholar 

  41. T. Minemoto, M. Murata, Theoretical analysis on effect of band offsets in perovskite solar cells. Sol. Energy Mater. Sol. Cells 133, 8–14 (2015)

    Article  Google Scholar 

  42. R. Wang et al., Interface engineering of Cu (In, Ga) Se2 solar cells by optimizing Cd-and Zn-chalcogenide alloys as the buffer layer. ACS Appl. Mater. Interfaces 13(13), 15237–15245 (2021)

    Article  Google Scholar 

  43. M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361, 527–532 (2000)

    Article  ADS  Google Scholar 

  44. A. Basak, U.P. Singh, Numerical modelling and analysis of earth abundant Sb2S3 and Sb2Se3 based solar cells using SCAPS-1D. Sol. Energy Mater. Sol. Cells 230, 111184 (2021)

    Article  Google Scholar 

  45. M. Saadat, O. Amiri, Fine adjusting of charge carriers transport in absorber/HTL interface in Sb2(S, Se)3 solar cells. Sol. Energy 243, 163–173 (2022)

    Article  ADS  Google Scholar 

  46. M. Huang, Z. Cai, S. Chen, Quasi-one-dimensional Sb2(S, Se)3 alloys as bandgap-tunable and defect-tolerant photocatalytic semiconductors. J. Chem. Phys. (2020). https://doi.org/10.1063/5.0013217

    Article  Google Scholar 

  47. J. Andrade-Arvizu et al., Is it possible to develop complex S-Se graded band gap profiles in Kesterite-based solar cells? ACS Appl. Mater. Interfaces 11(36), 32945–32956 (2019)

    Article  Google Scholar 

  48. B. Yang et al., Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2 (S1−xSex) 3 film: molecular precursor identification, film fabrication and band gap tuning. Sci. Rep. 5(1), 10978 (2015)

    Article  ADS  Google Scholar 

  49. X. Wang et al., Manipulating the electrical properties of Sb2(S, Se)3 film for high-efficiency solar cell. Adv. Energy Mater. 10(40), 2002341 (2020)

    Article  Google Scholar 

  50. M. Ishaq et al., Efficient double buffer layer Sb2(SexS1–x) 3 thin film solar cell via single source evaporation. Solar RRL 2(10), 1800144 (2018)

    Article  Google Scholar 

  51. X. Wang et al., Development of antimony sulfide–selenide Sb2(S, Se)3-based solar cells. J. Energy Chem. 27(3), 713–721 (2018)

    Article  ADS  Google Scholar 

  52. M. Islam, A. Thakur, Two stage modelling of solar photovoltaic cells based on Sb2S3 absorber with three distinct buffer combinations. Sol. Energy 202, 304–315 (2020)

    Article  ADS  Google Scholar 

  53. Z.-Q. Li, M. Ni, X.-D. Feng, Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res. Express 7(1), 016416 (2020)

    Article  ADS  Google Scholar 

  54. Y. Cao et al., Theoretical insight into high-efficiency triple-junction tandem solar cells via the band engineering of antimony chalcogenides. Solar RRL 5(4), 2000800 (2021)

    Article  Google Scholar 

  55. I. Gharibshahian, A.A. Orouji, S. Sharbati, Efficient Sb2(S, Se)3/Zn (O, S) solar cells with high open-circuit voltage by controlling sulfur content in the absorber-buffer layers. Sol. Energy 227, 606–615 (2021)

    Article  ADS  Google Scholar 

  56. C. Ding et al., Effect of the conduction band offset on interfacial recombination behavior of the planar perovskite solar cells. Nano Energy 53, 17–26 (2018)

    Article  Google Scholar 

  57. I. Gharibshahian, A.A. Orouji, S. Sharbati, Towards high efficiency Cd-Free Sb2Se3 solar cells by the band alignment optimization. Sol. Energy Mater. Sol. Cells 212, 110581 (2020)

    Article  Google Scholar 

  58. M. Saadat, O. Amiri, P. Mahmood, Analysis and performance assessment of CuSbS2-based thin-film solar cells with different buffer layers. Eur. Phys. J. Plus 137(5), 1–12 (2022)

    Article  Google Scholar 

  59. Y. Hamri et al., Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS. Sol. Energy 178, 150–156 (2019)

    Article  ADS  Google Scholar 

  60. S. Sharbati, J.R. Sites, Impact of the band offset for n-Zn (O, S)/p-Cu (In, Ga) Se2 solar cells. IEEE J. Photovolt. 4(2), 697–702 (2014)

    Article  Google Scholar 

  61. M. Saadat, O. Amiri, P.H. Mahmood, Potential efficiency improvement of CuSb (S1–x, Sex) 2 thin film solar cells by the Zn (O, S) buffer layer optimization. Sol. Energy 225, 875–881 (2021)

    Article  ADS  Google Scholar 

  62. N. Beyrami, M. Saadat, Z. Sohbatzadeh, A modeling study on utilizing In2S3 as a buffer layer in CIGS-based solar cells. J. Comput. Electron. 21(6), 1329–1337 (2022)

    Article  Google Scholar 

  63. M. Saadat, M. Moradi, M. Zahedifar, CIGS absorber layer with double grading Ga profile for highly efficient solar cells. Superlattices Microstruct. 92, 303–307 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saadat.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat, M. ZnxCd1–xSySe1–y as an effective electron transport layer for improving the efficiency of Sb2S3 and Sb2Se3 thin-film solar cells. Eur. Phys. J. Plus 139, 280 (2024). https://doi.org/10.1140/epjp/s13360-024-05079-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05079-1

Navigation