Skip to main content
Log in

Propagation dynamics of nonautonomous solitons in a temporally modulated cubic–quintic–septimal nonlinear medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the behavior of optical solitons within a nonlinear medium characterized by temporally varying second-order dispersion, cubic–quintic–septimal nonlinearities, and linear gain or loss. Our analysis yields analytical solutions for both bright and dark nonautonomous solitons governed by the generalized cubic–quintic–septimal nonlinear Schrödinger’s equation with time-dependent coefficients. These soliton solutions exhibit characteristics, including distributed parameters affecting their amplitude, position, and phase, offering effective control over their evolution. Through examination of different material parameters, we observe features in the evolution of these soliton structures, demonstrating the influence of system parameter modulation. Notably, our findings highlight the potential for dynamic control of soliton behavior through adjustments of time-modulated group velocity dispersion and gain or loss parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. S. Chen, D. Shi, L. Yi, Timing jitter of femtosecond solitons in single-mode optical fibers: a perturbation model. Phys. Rev. E 69, 046602 (2004)

    Article  ADS  Google Scholar 

  2. A. Biswas, J. Vega-Guzman, A. Kara, S. Khan, H. Triki, O. Gonzalez-Gaxiola, L. Moraru, P. Georgescu, Optical solitons and conservation laws for the concatenation model: undetermined coefficients and multipliers approach. Universe 9, 15 (2023)

    Article  ADS  Google Scholar 

  3. A. Arnous, A. Biswas, A. Kara, Y. Yildirim, L. Moraru, S. Moldovanu, P. Georgescu, A. Alghamdi, Dispersive optical solitons and conservation laws of Radhakrishnan–Kundu–Lakshmanan equation with dual-power law nonlinearity. Heliyou 9, E14036 (2023)

    Article  Google Scholar 

  4. F. Liu, H. Triki, Q. Zhou, Optical nondegenerate solitons in a birefringent fiber with 35 degree elliptical angle. Opt. Express 32, 2746–2765 (2024)

    Article  ADS  Google Scholar 

  5. A.M. Weiner, J.P. Heritage, R.J. Hawkins, R.N. Thurston, E.M. Kirschner, D.E. Leaird, W.J. Tomlinson, Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61, 2445–2448 (1988)

    Article  ADS  Google Scholar 

  6. J.S. Aitchison, A.M. Weiner, Y. Silberberg, M.K. Oliver, J.L. Jackel, D.E. Leaird, E.M. Vogel, P.W.E. Smith, Observation of spatial optical solitons in a nonlinear glass waveguide. Opt. Lett. 15, 471–473 (1990)

    Article  ADS  Google Scholar 

  7. F. Salin, P. Grangier, G. Roger, A. Brun, Observation of high-order solitons directly produced by a femtosecond ring laser. Phys. Rev. Lett. 56, 1132 (1986)

    Article  ADS  Google Scholar 

  8. Z. Li, L. Li, H. Tian, G. Zhou, New types of solitary wave solutions for the higher order nonlinear Schrödinger equation. Phys. Rev. Lett. 84, 4096–4099 (2000)

    Article  ADS  Google Scholar 

  9. W.J. Liu, B. Tian, H.Q. Zhang, T. Xu, H. Li, Solitary wave pulses in optical fibers with normal dispersion and higher-order effects. Phys. Rev. A 79, 063810 (2009)

    Article  ADS  Google Scholar 

  10. K. Porsezian, K. Nakkeeran, Optical solitons in presence of Kerr dispersion and self-frequency shift. Phys. Rev. Lett. 76, 3955 (1996)

    Article  ADS  Google Scholar 

  11. S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic, San Diego, 2003)

    Google Scholar 

  12. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 1989)

    Google Scholar 

  13. Z. Jovanoski, D.R. Roland, Variational analysis of solitary waves in a homogeneous cubic–quintic nonlinear medium. J. Mod. Opt. 48, 1179–1193 (2009)

    Article  ADS  Google Scholar 

  14. B. Lawrence, M. Cha, W.E. Torruellas, G.I. Stegeman, S. Etemad, G. Baker, F. Kajzer, Measurement of the complex nonlinear refractive index of single crystal p-toluene sulfonate at 1064 nm. Appl. Phys. Lett. 64, 2773–2775 (1994)

    Article  ADS  Google Scholar 

  15. B. Lawrence, W.E. Torruellas, M. Cha, M.L. Sundheimer, G.I. Stegeman, J. Meth, S. Etemad, G. Baker, Identification of the role of two-photon excited states in a \(\pi \)-conjugated polymer. Phys. Rev. Lett. 73, 597–600 (1994)

    Article  ADS  Google Scholar 

  16. D.E. Pelinovsky, Yu.S. Kivshar, V.V. Afanasjev, Instability-induced dynamics of dark solitons. Phys. Rev. E 54, 2015–2032 (1996)

    Article  ADS  Google Scholar 

  17. A. Mohamadou, C.G. Latchio-Tiofack, T.C. Kofané, Wave train generation of solitons in systems with higher-order nonlinearities. Phy. Rev. E 82, 016601 (2010)

    Article  ADS  Google Scholar 

  18. M. Quiroga-Teixeiro, H. Michinel, Stable azimuthal stationary state in quintic nonlinear optical media. J. Opt. Soc. Am. B 14, 2004–2009 (1997)

    Article  ADS  Google Scholar 

  19. B.A. Malomed, D. Mihalache, F. Wise, L. Torner, Spatiotemporal optical solitons. J. Opt. B Quantum Semiclassical Opt. 7, R53–R72 (2005)

    Article  ADS  Google Scholar 

  20. Ph. Grelu, J.M. Soto-Crespo, N. Akhmediev, Light bullet and dynamic pattern formation in nonlinear dissipative systems. Opt. Express 13(23), 9352–9360 (2005)

    Article  ADS  Google Scholar 

  21. X.L. Li, R. Guo, Interactions of localized wave structures on periodic backgrounds for the coupled Lakshmanan–Porsezian–Daniel equations in birefringent optical fibers. Ann. Phys. 535, 2200472 (2022)

    Article  Google Scholar 

  22. Z. Zou, R. Guo, The Riemann–Hilbert approach for the higher-order Gerdjikov–Ivanov equation, soliton interactions and position shift. Commun. Nonlinear Sci. Numer. Simul. 124, 107316 (2023)

    Article  MathSciNet  Google Scholar 

  23. R.C. Yang, L. Li, R.Y. Hao, Z.H. Li, G.S. Zhou, Combined solitary wave solutions for the inhomogeneous higher-order nonlinear Schrödinger equation. Phys. Rev. E 71, 036616 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Wang, J.H. Zhang, C. Liu, M. Li, F.H. Qi, Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. V.N. Serkin, A. Hasegawa, Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Article  ADS  Google Scholar 

  26. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Nonautonomous solitons in external potentials. Phys. Rev. Lett. 98, 074102 (2007)

    Article  ADS  Google Scholar 

  27. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Nonautonomous matter-wave solitons near the Feshbach resonance. Phys. Rev. A 81, 023610 (2010)

    Article  ADS  Google Scholar 

  28. V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Solitary waves in nonautonomous nonlinear and dispersive systems: nonautonomous solitons. J. Mod. Opt. 57, 1456–1472 (2010)

    Article  ADS  Google Scholar 

  29. Z. Yan, Nonautonomous “rogons’’ in the inhomogeneous nonlinear Schrödinger equation with variable coefficients. Phys. Lett. A 374, 672–679 (2010)

    Article  ADS  Google Scholar 

  30. A.S. Reyna, C.B. de Araújo, Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express 22(19), 22456–22469 (2014)

    Article  ADS  Google Scholar 

  31. A.S. Reyna, K.C. Jorge, C.B. de Araújo, Two-dimensional solitons in a quintic–septic medium. Phys. Rev. A 90, 063835 (2014)

    Article  ADS  Google Scholar 

  32. A.S. Reyna, B.A. Malomed, C.B. de Araújo, Stability conditions for one-dimensional optical solitons in cubic–quintic–septimal media. Phys. Rev. A 92, 033810 (2015)

    Article  ADS  Google Scholar 

  33. A.S. Reyna, C.B. de Araújo, An optimization procedure for the design of all-optical switches based on metal-dielectric nanocomposites. Opt. Express 23(6), 7659–7666 (2015)

    Article  ADS  Google Scholar 

  34. J. Jayabalan, A. Singh, R. Chari, S. Khan, H. Srivastava, S.M. Oak, Transient absorption and higher-order nonlinearities in silver nanoplatelets. Appl. Phys. Lett. 94, 181902 (2009)

    Article  ADS  Google Scholar 

  35. Y.-F. Chen, K. Beckwitt, F.W. Wise, B.G. Aitken, J.S. Sanghera, I.D. Aggarwal, Measurement of fifth- and seventh-order nonlinearities of glasses. J. Opt. Soc. Am. B 23(2), 347–352 (2006)

    Article  ADS  Google Scholar 

  36. H. Triki, K. Porsezian, P. Tchofo Dinda, Ph. Grelu, Dark spatial solitary waves in a cubic–quintic–septimal nonlinear medium. Phys. Rev. A 95, 023837 (2017)

    Article  ADS  Google Scholar 

  37. S. Loomba, R. Pal, C.N. Kumar, Bright solitons of the nonautonomous cubic–quintic nonlinear Schrödinger equation with sign-reversal nonlinearity. Phys. Rev. A 92, 033811 (2015)

    Article  ADS  Google Scholar 

  38. A.S. Reyna, C.B. de Araújo, Spatial phase modulation due to quintic and septic nonlinearities in metal colloids. Opt. Express 22, 22456–22469 (2014)

    Article  ADS  Google Scholar 

  39. H. Triki, A. Choudhuri, Q. Zhou, A. Biswas, A.S. Alshomrani, Nonautonomous matter wave bright solitons in a quasi-1D Bose–Einstein condensate system with contact repulsion and dipole–dipole attraction. Appl. Math. Comput. 371, 124951 (2020)

    MathSciNet  Google Scholar 

  40. J.F. Zhang, C.Q. Dai, Q. Yang, J.M. Zhu, Variable-coefficient F-expansion method and its application to nonlinear Schr ödinger equation. Opt. Commun. 252, 408–421 (2005)

    Article  ADS  Google Scholar 

  41. S. Loomba, H. Kaur, Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation. Phys. Rev. E 88, 062903 (2013)

    Article  ADS  Google Scholar 

  42. J.B. Beitia, J. Cuevas, Solitons for the cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients. J. Phys. A 42, 165201 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  43. L.W.S. Baines, R.A. Van Gorder, Soliton wave-speed management: slowing, stopping, or reversing a solitary wave. Phys. Rev. A 97, 063814 (2018)

    Article  ADS  Google Scholar 

  44. M.S. Mani Rajan, A. Mahalingam, Multi-soliton propagation in a generalized inhomogeneous nonlinear Schrödinger–Maxwell–Bloch system with loss/gain driven by an external potential. J. Math. Phys. 54, 043514 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. G.Q. Meng, Y.T. Gao, X. Yu, Y.J. Shen, Y. Qin, Painlevé analysis, Lax pair, Bäcklund transformation and multi-soliton solutions for a generalized variable-coefficient KdV–mKdV equation in fluids and plasmas. Phys. Scr. 85, 055010 (2012)

    Article  ADS  Google Scholar 

  46. Z.Y. Yang, L.C. Zhao, T. Zhang, Y.H. Li, R.H. Yue, Snakelike nonautonomous solitons in a graded-index grating waveguide. Phys. Rev. A 81, 043826 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Gao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triki, H., Bouguerra, A., Gao, X. et al. Propagation dynamics of nonautonomous solitons in a temporally modulated cubic–quintic–septimal nonlinear medium. Eur. Phys. J. Plus 139, 287 (2024). https://doi.org/10.1140/epjp/s13360-024-05062-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05062-w

Navigation