Skip to main content
Log in

Analytical representation of a charged black hole puncture solution

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The evolution of a single uncharged black hole with the moving puncture method, considering suitable gauge conditions, leads to a time-independent maximal slicing of Schwarzschild spacetime. This configuration was constructed numerically and later analytically. We proceed here taking an inverse path: We first derived the analytical solution representing time-independent maximal slicing of Reissner–Nordstrom spacetime and show that it is a final state dictated by the moving puncture evolution using appropriate gauge conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data sets generated during the current study are available from the corresponding author on reasonable request. The manuscript has associated data in a data repository.

Notes

  1. A more complete and detailed moving puncture dynamics of a single-charged black hole is in preparation [16].

References

  1. M. Campanelli, C.O. Lousto, P. Maorroneti, Zlochower, Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  Google Scholar 

  2. J.G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, J. van Meter, Phys. Rev. Lett. 96, 111102 (2006)

    Article  ADS  Google Scholar 

  3. C. Bona, J. Massó, E. Seidel, J. Stela, Phys. Rev. Lett. 75, 600 (1995)

    Article  ADS  Google Scholar 

  4. M. Alcubierre, B. Brügmann, D. Pollney, E. Seidel, R. Takahashi, Phys. Rev. D 64, 061501 (2001)

    Article  ADS  Google Scholar 

  5. M. Alcubierre, B. Brügmann, P. Diener, M. Koppitz, D. Pollney, E. Seidel, R. Takahashi, Phys. Rev. D 67, 084023 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Nakamura, K. Oohara, Y. Kojima, Prog. Theor. Phys. Suppl. 90, 1 (1987)

    Article  ADS  Google Scholar 

  7. M. Shibata, T. Nakamura, Phys. Rev. D 52, 5428 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  8. T.W. Baumgarte, S.L. Shapiro, Phys. Rev. D 59, 024007 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Hannam, S. Husa, D. Pollney, B. Brügmann, N.Ó. Murchada, Phys. Rev. Lett. 99, 241102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Hannam, S. Husa, B. Brügmann, J.A. González, U. Sperhake, N.Ó. Murchada, J. Phys.: Conf. Ser. 66, 012047 (2007)

    Google Scholar 

  11. T.W. Baumgarte, H.P. de Oliveira, Phys. Rev. D 105, 064045 (2022)

    Article  ADS  Google Scholar 

  12. T.W. Baumgarte, S.G. Naculich, Phys. Rev. D 75, 067502 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  13. S.E. Li, T.W. Baumgarte, K.A. Dennison, H.P. de Oliveira, Phys. Rev. D 106, 104059 (2022)

    Article  ADS  Google Scholar 

  14. F. Estabrook, H. Wahlquist, S. Christensen, B. DeWitt, L. Smarr, E. Tsiang, Phys. Rev. D 7(10), 2814 (1973)

    Article  ADS  Google Scholar 

  15. M.J. Duncan, Phys. Rev. D 31, 1267 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Medeiros, H.P. de Oliveira, Moving puncture dynamics of charged black holes (in preparation)

  17. H.P. de Oliveira, Phys. Rev. D 106, 084030 (2022)

    Article  ADS  Google Scholar 

  18. J.D. Brown, Phys. Rev. D 79, 104029 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Alcubierre, M.D. Mendez, Gen. Rel. Grav. 43, 2769 (2011)

    Article  ADS  Google Scholar 

  20. P.J. Montero, I. Cordero-Carrion, Phys. Rev. D 85, 124037 (2012)

    Article  ADS  Google Scholar 

  21. M. Alcubierre, J.C. Degollado, M. Salgado, Phys. Rev. D 80, 104022 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

H. P. de Oliveira thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Grant No. E-26/200.774/2023 Bolsas de Bancada de Projetos (BBP)). F. Medeiros acknowledges the financial support of the Brazilian agency Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. de Oliveira.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, F., de Oliveira, H.P. Analytical representation of a charged black hole puncture solution. Eur. Phys. J. Plus 139, 285 (2024). https://doi.org/10.1140/epjp/s13360-024-05052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05052-y

Navigation