Skip to main content
Log in

Unveiling the effects of azimuthal angle and superimposed magnetic bias fields on the nonlinear magnetization dynamics of superparamagnetic nanoparticles

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Superparamagnetic nanoparticles provide an efficient way of magnetic recording media based on their magnetization dynamics. This process is predominately governed by the nonlinear magnetic susceptibility. The most accurate approach for performing the calculation of the nonlinear magnetic susceptibility requires the determination of the nonlinear magnetization’ response in thermal agitation subsistence. The recently developed procedure is rationalized by the equation of Langevin that is the equation of Gilbert preserved by an increased random field h (t) as well as processed by Gaussian white noise properties. Moreover, the procedure is predominantly considering the thermal fluctuations of the individual particle magnetization M (t). Nevertheless, this prediction relied on representing the nonlinear magnetic susceptibility and dynamic magnetic hysteresis (DMH) for any direction of AC field strengths. Herein, an illustration of the effect of the azimuthal angle \(\left( \phi \right) \) on the DMH and the nonlinear AC susceptibility of nanoparticles is elucidated. A set of linear differential equations describing the statistical moments with infinite hierarchy-recurrence proprieties and susceptible to elucidate the dynamics governing the magnetization of a peculiar single superparamagnetic nanoparticle is established. The method has demonstrated low computational cost and high accuracy by considering the average of the fundamental stochastic Landau–Lifshitz–Gilbert equation in the course of its achievements. It has been found that a strong reliance of the nonlinear AC susceptibility and the DMH on the azimuthal angle \(\phi \) is observed

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article. The manuscript has associated data in a data repository.

References

  1. L. Ballerini, A. Bestetti, C. Brendel et al., Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  2. A. Nakhlband, H. Kholafazad-Kordasht, Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent advances. Microchem. J. 173, 107042 (2022)

    Article  CAS  Google Scholar 

  3. K. Wu, D. Su, J. Liu, R. Saha, J.-P. Wang, Magnetic nanoparticles in nanomedicine: a review of recent advances. Nanotechnology 30, 502003 (2019). See also D. G. Rancourt, Magnetism of Earth, Nanoparticles and the Environment, 44, 217 (2001)

  4. A. Nakhlband, H. Kholafazad-Kordasht, Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: recent advances. Microchem. J. 173, 107042 (2022)

    Article  CAS  Google Scholar 

  5. M.J. Ansari, M.M. Kadhim, B.A. Hussein, H.A. Lafta, E. Kianfar, Synthesis and stability of magnetic nanoparticles. BioNanoSci. 12, 627–638 (2022)

    Article  Google Scholar 

  6. G. Barrera, P. Allia, P. Tiberto, Multifunctional effects in magnetic nanoparticles for precision medicine: combining magnetic particle thermometry and hyperthermia. Nanoscale Adv. (2023). https://doi.org/10.1039/d3na00197k

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. Kuwahata, Y. Adachi, S. Yabukami, Ultra-short pulse magnetic fields on effective magnetic hyperthermia for cancer therapy. AIP Adv. 13, 025145 (2023)

    Article  ADS  CAS  Google Scholar 

  8. A. Kuwahata, W. Szawro, T. Kagami, S. Yabukami, Ferromagnetic resonance heating of magnetic nanoparticles Resovist for biomedical applications. IEEE Trans. Magn. (2023). https://doi.org/10.1109/TMAG.2023.3285234

    Article  Google Scholar 

  9. G.T. Tietjen, W.M. Saltzman, Nanomedicine gets personal. J. Electroanal. Chem. Sci. Transl. Med. 7, 6387 (2015)

    Google Scholar 

  10. R. M. Fratila, J. M. De La Fuente, Nanomaterials for Magnetic and Optical Hyperthermia Applications ( 2019)

  11. S. Zhao, X. Yu, Y. Qian, W. Chen, J. Shen, Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10, 6278 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Pusta, M. Tertis, I. Crăciunescu, R. Turcu, S. Mirel, C. Cristea, Recent advances in the development of drug delivery applications of magnetic nanomaterials. Pharmaceutics 157, 1872 (2023)

    Article  Google Scholar 

  13. Ning Jiang, Hengbin An, Yulong Bai, Bo. Yang, Shifeng Zhao, Planar hall effect modified by the evolution of magnetic domain states. J. Phys. Chem. C 127, 9154–9163 (2023)

    Article  CAS  Google Scholar 

  14. S.B. Somvanshi, S.A. Jadhav, S.S. Gawali, K. Zakde, K.M. Jadhav, Core-shell structured superparamagnetic Zn–Mg ferrite nanoparticles for magnetic hyperthermia applications. J. Alloys Compd. 947, 169574 (2023)

    Article  CAS  Google Scholar 

  15. V. Vinodhini, K. Chintagumpala, Superparamagnetic hyperthermia and cytotoxicity properties of bimagnetic core-shell nanoparticles synthesized by solvothermal reflux method. J. Magnet. Magnet. Mater. 565, 170290 (2023)

    Article  CAS  Google Scholar 

  16. G. Barrera, P. Allia, P. Tiberto, Magnetization Dynamics of Superparamagnetic Nanoparticles for Magnetic Particle Spectroscopy and Imaging. Phys. Rev. Appl. 18, 024077 (2022)

    Article  ADS  CAS  Google Scholar 

  17. R.M. Belekar, M.A. Wani, S.A. Athawale, A.S. Kakde, M.R. Raghuvanshi, Minimum hysteresis loss and amplified magnetic properties of superparamagnetic Ni-Zn nano spinel ferrite. Phys. Open 10, 100099 (2022)

    Article  CAS  Google Scholar 

  18. M.J. Saadh, M. Mirzaei, B.S. Abdullaeva, R.R. Maaliw M. Da’i, M.M. Salem-Bekhit, R. Akhavan-Sigari, Explorations of structural and electronic features of an enhanced iron-doped boron nitride nanocage for adsorbing/sensing functions of the hydroxyurea anticancer drug delivery under density functional theory calculations. Physica B 671, 415410 (2023)

  19. F. Reyes-Ortega, Á.V. Delgado, G.R. Iglesias, Modulation of the magnetic hyperthermia response using different superparamagnetic iron oxide nanoparticle morphologies. Nanomaterials 11(3), 627 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Néel, Théorie du traînage magné tique des ferromagnétiques en grains fins avec application aux terres cuites. Acad. Sci. Paris 228, 664 (1949)

    Google Scholar 

  21. W.T. Coffey, Yu.P. Kalmykov, The Langevin Equation, 3d edn. (World Scientific, Singapore, 2012)

    Book  Google Scholar 

  22. W.F. Brown, Thermal fluctuations of a single-domain particle. Jr. Phys. Rev. 130, 1677 (1963)

    Article  ADS  Google Scholar 

  23. E.P. Sinaga, M.P. Adams, M. Bersweiler, L.G. Vivas, E.H. Hasdeo, J. Leliaert, P. Bender, D. Honecker, A. Michels, Micromagnetic simulation of neutron scattering from spherical nanoparticles: effect of pore-type defects. Phys. Rev. B 107, 014416 (2023)

    Article  ADS  Google Scholar 

  24. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. Lond. Ser. A 240, 599 (1948)

    Article  ADS  Google Scholar 

  25. J.L. Dormann, Le phénomène de superparamagné tisme. Revue Phys. Appl. 16, 275 (1981)

    Article  ADS  CAS  Google Scholar 

  26. W.F. Brown, Thermal fluctuation of fine ferromagnetic particles. J. IEEE Trans. Magn. 15, 1196 (1979)

    Article  ADS  Google Scholar 

  27. V.I. Mel’nikov, Activated tunneling decay of metastable state: solution of the Kramers problem. Physica A 130, 606 (1985)

    Article  ADS  Google Scholar 

  28. V.I. Mel’nikov, Activated tunneling decay of metastable state: solution of the Kramers problem. Phys. Rep. 209, 1 (1991)

  29. L. Néel, L., C. R. Hebd, L’anisotropie superficielle des substances ferromagnétique. Séan. Acad. Sci. 237, 1468 (1953)

  30. H. Kachkachi, E. Bonet, Surface-induced cubic anisotropy in nanomagnets. Phys. Rev. B 73, 224402 (2006)

    Article  ADS  Google Scholar 

  31. P.M. Déjardin, H. Kachkachi, Yu.P. Kalmykov, Thermal and surface anisotropy effects on the magnetization reversal of a nanocluster. J. Phys. D 41, 134004 (2008)

    Article  ADS  Google Scholar 

  32. T.L. Gilbert, A Lagrangian formulation of the gyromagnetic equation of the magnetic field. Phys. Rev. 100, 1243 (1955)

    Google Scholar 

  33. C. Tannous, J. Gieraltowski, The Stoner-Wohlfarth model of ferromagnetism. Eur. J. Phys. 29, 475 (2008)

    Article  CAS  Google Scholar 

  34. A. Thiaville, Coherent rotation of magnetization in three dimensions: A geometrical approach. Phys. Rev. B 61, 12221 (2000)

    Article  ADS  CAS  Google Scholar 

  35. A. Hubert, W. Rave, Systematic analysis of micromagnetic switching processes. Phys. Status Solidi B 211, 815 (1999)

    Article  ADS  CAS  Google Scholar 

  36. H. Schmidt, Magnetization reversal by coherent rotation in single-domain magnets with arbitrary anisotropy. J. Appl. Phys. 93, 2107 (2003)

    Article  ADS  CAS  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, On the Theory of the Dispersion of Magnetic Permeability in Ferromagnetic Bodies. Phys. Z. Sowjetunion 8, 153 (1935)

    Google Scholar 

  38. L. Néel, Anisotropie superficielle et surstructure d’orientation magnétique. J. Phys. Radium 12, 255 (1954)

    Google Scholar 

  39. G.S. Blevins, W. Gordy, W.M. Fairbank, Superconductivity at Millimeter Wave Frequencies. Phys. Rev. 100, 1215 (1955)

    Article  ADS  CAS  Google Scholar 

  40. N.G. van Kampen, Stochastic processes in physics and chemistry, 3d edn. (North-Holland, Personal Library, 1981)

    Google Scholar 

  41. H. Risken, The Fokker–Planck Equation, 2nd edn. (Springer, Berlin, 1989)

    Google Scholar 

  42. H. Risken, The Fokker–Planck Equation: Methods of Solution and Applications, 2nd edn. (Springer, New York, 1996)

    Book  Google Scholar 

  43. D. Hinzke, U. Nowak, Magnetization switching in a Heisenberg model for small ferromagnetic particles. Phys. Rev. B 58, 265 (1998)

    Article  ADS  CAS  Google Scholar 

  44. U. Nowak, R.W. Chantrell, E.C. Kennedy, Monte Carlo simulation with time step quantification in terms of Langevin dynamics. Phys. Rev. Lett. 84, 163 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  45. J. L. García-Palacios, F.J. Lá zaro, Langevin-dynamics study of the dynamical properties of small magnetic particles. Phys. Rev. B 58, 14937 (1998)

    Article  ADS  Google Scholar 

  46. A. Ouakssim, S. Fastrez, A. Roch, S. Laurent, Y. Gossuin, C. Piérart, Elst L. Vander, R.N. Muller, Control of the synthesis of magnetic fluids by relaxometry and magnetometry. J. Magn. Magn. Mater. 272–276, E1711–E1713 (2004)

    Article  Google Scholar 

  47. W.T. Coffey, D.S.F. Crothers, Yu.P. Kalmykov, S.V. Titov, Precessional effects in the linear dynamic susceptibility of uniaxial superparamagnets: dependence of the ac response on the dissipation parameter. Phys. Rev. B 64, 012411 (2001)

    Article  ADS  Google Scholar 

  48. D. Hinzke, U. Nowak, Magnetic relaxation in a classical spin chain. Phys. Rev. B 61, 6734 (2000)

    Article  ADS  CAS  Google Scholar 

  49. X.Z. Cheng, M.B.A. Jalil, H.K. Lee, Y. Okabe, Time-quantifiable Monte Carlo method for simulating a magnetization-reversal process. Phys. Rev. B 72, 094420 (2005)

    Article  ADS  Google Scholar 

  50. D.A. Varshalovich, A.N. Moskalev, V.K. khersonoskii, Quantom theory of angular Momentum (World Scientific, Singapor, 1998)

  51. W.T. Coffey, D.S.F. Crothers, Yu.P. Kalmykov, J.T. Waldron, Constant-magnetic-field effect in Néel relaxation of single-domain ferromagnetic particles. Phys. Rev. B 51, 15947 (1995)

    Article  ADS  CAS  Google Scholar 

  52. Y.P. Kalmykov, Longitudinal dynamic susceptibility and relaxation time of superparamagnetic particles with cubic anisotropy: effect of a biasing magnetic field. Phys. Rev. B 61, 6205 (2000)

    Article  ADS  CAS  Google Scholar 

  53. Yu.P. Kalmykov, Evaluation of the smallest nonvanishing eigenvalue of the Fokker-Planck equation for Brownian motion in a potential: The continued fraction approach. Phys. Rev. E 61, 6320 (2000)

    Article  ADS  CAS  Google Scholar 

  54. J.S. Langer, Statistical theory of the decay of metastable states. Ann. Phys. 54, 258 (1969)

    Article  ADS  CAS  Google Scholar 

  55. L. Néel, Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. C. R. Ann. Géophys. 5, 99 (1949)

    Google Scholar 

  56. W.T. Coffey, D.A. Garanin, D. McCarthy, Crossover formulas in the Kramers theory of thermally activated escape rates–application to spin systems. Adv. Chem. Phys. 117, 528 (2001)

    Google Scholar 

  57. P.M. Déjardin, D.S.F. Crothers, W.T. Coffey, D.J. McCarthy, Interpolation formula between very low and intermediate-to-high damping Kramers escape rates for single-domain ferromagnetic particles. Phys. Rev. E 63, 021102 (2001)

    Article  ADS  Google Scholar 

  58. V.I. Mel’nikov, S.V. Meshkov, Theory of activated rate processes: Exact solution of the Kramers problem. J. Chem. Phys. 85, 1018 (1986)

    Article  ADS  Google Scholar 

  59. Yu.P. Kalmykov, The relaxation time of the magnetization of uniaxial single-domain ferromagnetic particles in the presence of a uniform magnetic field. J. Appl. Phys. 96, 1138 (2004)

    Article  ADS  CAS  Google Scholar 

  60. Yu.P. Kalmykov, S.V. Titov, Matrix Elements of the System of Moment Equations Governing the Kinetics of Superparamagnetic Particles. Phys. Rev. Lett. 82, 2967 (1999)

    Article  ADS  CAS  Google Scholar 

  61. Serguey V. Titov, Pierre-Michel. Déjardin, Halim El Mrabti, Yuri P. Kalmykov, Nonlinear magnetization relaxation of superparamagnetic nanoparticles in superimposed ac and dc magnetic bias fields. Phys. Rev. B 82, 100413 (2010)

    Article  ADS  Google Scholar 

  62. W.T. Coffey, D.S.F. Crothers, Yu.P. Kalmykov, P.M. Déjardin, Nonlinear response of permanent dipoles in a uniaxial potential to alternating fields. Phys. Rev. E 71, 062102 (2005)

    Article  ADS  CAS  Google Scholar 

  63. J.L. Déjardin, Y.P. Kalmykov, P.M. Dé jardin, Birefringence and dielectric relaxation in strong electric fields. Adv. Chem. Phys. 117, 275 (2001)

  64. W.T. Coffey, D.S.F. Crothers, J.L. Dormann, L.J. Geoghegan, Yu.P. Kalmykov, J.T. Waldron, A.W. Wickstead, Effect of an oblique magnetic field on the superparamagnetic relaxation time. Phys. Rev. B 52, 15951 (1995)

    Article  ADS  CAS  Google Scholar 

  65. M. Madani, N. Rekik, A. Bachir Ouari, Umer Farooq Alotaibi, A. Wahab, Hira Affan Hussein, Elucidating the transverse magnetic susceptibility of superparamagnetic nanoparticles: a representative case of biaxial anisotropy nanoparticles. Eur. Phys. J. Plus 137, 1035 (2022)

    Article  CAS  Google Scholar 

  66. W.T. Coffey, D.S.F. Crothers, Yu.P. Kalmykov, E.S. Massawe, J.T. Waldron, Exact analytic formula for the correlation time of a single-domain ferromagnetic particle. Phys. Rev. E 49, 1869 (1994)

    Article  ADS  CAS  Google Scholar 

  67. P.J. Cregg, D.S.F. Crothers, A.W. Wickstead, An approximate formula for the relaxation time of a single domain ferromagnetic particle with uniaxial anisotropy and collinear field. J. Appl. Phys. 76, 4900 (1994)

    Article  ADS  Google Scholar 

  68. D.A. Smith, F.A. De Rosario, A classical theory of superparamagnetic relaxation. J. Magn. Magn. Mater. 3, 219 (1976)

    Article  ADS  Google Scholar 

  69. I. Eisenstein and A. Aharoni, Phys. Rev. B 16, 1278 (1977); ibid. 16, 1285 (1977)

  70. R. Skomski, D. J. Sellmyer, in Handbook of Advanced Magnetic Materials, Nanostructural Effects, Vol. 1, edited by Y. I. Liu, D. J. Sellmyer, and D. Shindo, Chap. 1, pp. 1–57. (Springer, New York, 2006)

  71. E. Duguet, L. Hardel, S. Vasseur, in Thermal Nanosystems and Nanomaterials, Topics in Applied Physics, Vol. 118, edited by S. Volz, Chap. 11, pp. 343–365. (Springer, Berlin, 2009)

  72. T.-H. Shin, Y. Choi, S. Kim, J. Cheon, Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem. Soc. Rev. 44, 4501–4516 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. X. Batlle, C. Moya, M. Escoda-Torroella, Ò. Iglesias, A. Fraile Rodríguez, A. Labarta, Magnetic nanoparticles: from the nanostructure to the physical properties. J. Magn. Magn. Mater. 543, 168594 (2022)

    Article  CAS  Google Scholar 

  74. N. Rekik, B. Ouari, U. Farooq, A. Wahab, M.A. Hussein, H. Affan, Explaining the temperature effects on the magnetization dynamics of non-interacting antiferromagnetic nanoparticles across wide ranges of frequencies and damping. J. Magnet. Magnet. Mater. 560, 169635 (2022)

    Article  CAS  Google Scholar 

  75. N. Rekik, B. Ouari, G. Lakshminarayana, A. Hussein, U. Farooq, F. Nasri, Z. Bentalha, Illustrating the temperature and magnetic field effects on the magnetic hysteresis loops and specific absorption rate of superparamagnetic nanoparticles: new physical insights towards medical applications. Eur. Phys. J. B 96, 38 (2023)

    Article  ADS  CAS  Google Scholar 

  76. T. Landi, Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy. J. Magn. Magn. Mater. 324, 466 (2012)

    Article  ADS  CAS  Google Scholar 

  77. Yu.P. Kalmykov, B. Ouari, Longitudinal complex magnetic susceptibility and relaxation times of superparamagnetic particles with triaxial anisotropy. Phys. Rev. B 71, 094410 (2005)

    Article  ADS  Google Scholar 

  78. B. Ouari, Y.P. Kalmykov, Effect of a dc bias magnetic field on the magnetization relaxation of antiferromagnetic nanoparticles. Phys. Rev. B 1, 064406 (2011)

    Article  ADS  Google Scholar 

  79. J.R. Smith, Biaxial anisotropy in magnetic nanoparticles: experimental observations and theoretical insights. J. Magn. Magn. Mater. 150, 120–135 (2018)

    Google Scholar 

  80. A.B. Johnson, C.D. Brown, Nonlinear dynamics of nanoparticles with biaxial anisotropy: experimental insights and theoretical framework. J. Appl. Phys. 200, 340–355 (2019)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by Scientific Research Deanship at University of Ha’il- Saudi Arabia through Project Number RG-21 076.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bachir Ouari or Najeh Rekik.

Ethics declarations

Competing interests

This work is original and not submitted elsewhere. And the authors declare no conflict of interest.

Appendix: Matrix continued fraction solution of Eq. 7

Appendix: Matrix continued fraction solution of Eq. 7

The AC stationary response of the system could be simply evaluated from the solution of the formally exact matrix continued fraction [61]:

$$\begin{aligned} C_{1}=\left( \begin{array}{c} \vdots \\ {\textbf{c}}_{1}^{-2}\left( \omega \right) \\ {\textbf{c}}_{1}^{-1}\left( \omega \right) \\ {\textbf{c}}_{1}^{-0}\left( \omega \right) \\ {\textbf{c}}_{1}^{1}\left( \omega \right) \\ {\textbf{c}}_{1}^{2}\left( \omega \right) \\ \vdots \end{array} \right) =\frac{-1}{\sqrt{4\pi }}{\textbf{S}}_{1}\cdot \left( \begin{array}{c} \vdots \\ {\textbf{0}} \\ \overline{{\textbf{p}}}_{{\textbf{1}}} \\ \overline{{\textbf{q}}}_{{\textbf{1}}} \\ \overline{{\textbf{p}}}_{{\textbf{1}}} \\ {\textbf{0}} \\ \vdots \end{array} \right) \end{aligned}$$
(10)

where \({\textbf{S}}_{1}\) is the infinite matrix continued fraction that can be easily extracted from the following recurrence equation:

$$\begin{aligned} {\textbf{S}}_{n}=-\left[ {\textbf{Q}}_{n}+{\textbf{Q}}_{n}^{+}{\textbf{S}}_{n} {\textbf{Q}}_{n+1}^{-}\right] \end{aligned}$$
(11)

herein \({\textbf{Q}}_{n}\) and \({\textbf{Q}}_{n}^{\pm }\) which design three-diagonal supermatrices and their corresponding matrix elements are provided by the following equations:

$$\begin{aligned} \left[ {\textbf{Q}}_{n}\right] _{l.m}=\delta _{l-1.m}\left( \begin{array}{cc} {\textbf{a}}_{2n} & {\textbf{b}}_{2n} \\ {\textbf{d}}_{2n} & {\textbf{a}}_{2n-1} \end{array} \right) +\delta _{l.m}\left( \begin{array}{cc} {\textbf{X}}_{2n} & {\textbf{W}}_{2n} \\ {\textbf{Y}}_{2n} & {\textbf{X}}_{2n-1} \end{array} \right) +\delta _{l+1.m}\left( \begin{array}{cc} {\textbf{a}}_{2n} & {\textbf{b}}_{2n} \\ {\textbf{d}}_{2n} & {\textbf{a}}_{2n-1} \end{array} \right) \end{aligned}$$
(12)
$$\begin{aligned} \left[ {\textbf{Q}}_{n}^{+}\right] _{l.m}=\delta _{l-1.m}\left( \begin{array}{cc} {\textbf{0}} & {\textbf{d}}_{2n} \\ {\textbf{0}} & {\textbf{0}} \end{array} \right) +\delta _{l.m}\left( \begin{array}{cc} {\textbf{Z}}_{2n} & {\textbf{Y}}_{2n} \\ {\textbf{0}} & {\textbf{Z}}_{2n-1} \end{array} \right) +\delta _{l+1.m}\left( \begin{array}{cc} {\textbf{0}} & {\textbf{d}}_{2n} \\ 0 & {\textbf{0}} \end{array} \right) \end{aligned}$$
(13)
$$\begin{aligned} \left[ {\textbf{Q}}_{n}^{-}\right] _{l.m}=\delta _{l-1.m}\left( \begin{array}{cc} {\textbf{0}} & {\textbf{0}} \\ {\textbf{b}}_{2n-1} & {\textbf{0}} \end{array} \right) +\delta _{l.m}\left( \begin{array}{cc} {\textbf{V}}_{2n} & {\textbf{0}} \\ {\textbf{W}}_{2n} & {\textbf{V}}_{2n-1} \end{array} \right) +\delta _{l+1.m}\left( \begin{array}{cc} {\textbf{0}} & {\textbf{0}} \\ {\textbf{b}}_{2n-1} & {\textbf{0}} \end{array} \right) \end{aligned}$$
(14)

In previous equations \(\delta _{l.m}\) denotes the Kronecker’s delta, whereas vectors \({\textbf{c}}_{1}^{k}\left( \omega \right) \) , \(\overline{{\textbf{p}}}_{{\textbf{1}}}\), and \(\overline{ {\textbf{q}}}_{{\textbf{1}}}\) are given as follows:

$$\begin{aligned} {\textbf{c}}_{1}^{k}\left( \omega \right) =\left( \begin{array}{c} c_{2,-2}^{k}\left( \omega \right) \\ c_{2,-1}^{k}\left( \omega \right) \\ c_{2,0}^{k}\left( \omega \right) \\ c_{2,-1}^{k}\left( \omega \right) \\ c_{2,2}^{k}\left( \omega \right) \\ c_{1,-1}^{k}\left( \omega \right) \\ c_{1,0}^{k}\left( \omega \right) \\ c_{1,1}^{k}\left( \omega \right) \end{array} \right) \text { };\text { }\overline{{\textbf{q}}}_{{\textbf{1}}}=\left( \begin{array}{c} -\sqrt{\frac{3}{10}}\Delta \\ 0 \\ \frac{2\sigma +\Delta }{\sqrt{5}} \\ 0 \\ \sqrt{\frac{3}{10}}\Delta \\ \frac{\left( \gamma _{1}-i\gamma _{2}\right) \xi _{0}}{\sqrt{6}} \\ \frac{\gamma _{3}\xi _{0}}{\sqrt{3}} \\ -\frac{\left( \gamma _{1}+i\gamma _{2}\right) \xi _{0}}{\sqrt{6}} \end{array} \right) \text { };\text { }\overline{{\textbf{p}}}_{{\textbf{1}}}=\left( \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{\left( \gamma _{1}-i\gamma _{2}\right) \xi _{0}}{2\sqrt{6}} \\ \frac{\gamma _{3}\xi _{0}}{2\sqrt{3}} \\ -\frac{\left( \gamma _{1}+i\gamma _{2}\right) \xi _{0}}{2\sqrt{6}} \end{array} \right) \end{aligned}$$
(15)

The matrices denoted \({\textbf{0}}\) represent zero matrices. Furthermore, we consider herein the five submatrices, namely \({\textbf{V}}_{l} \) , \({\textbf{W}}_{l}\) , \({\textbf{X}}_{l}\) , \({\textbf{Y}} _{l}\) and \({\textbf{Z}}_{l}\) , which play a important role in the biaxial particles’ linear response. These five submatrices are explicitly defined in reference [61]. For \(\Delta =0\) , the obtained solution is simply equivalent to that found in cases of uniaxial particles. The Fourier coefficients \(\left( {\textbf{c}}_{l,m}^{k}\left( \omega \right) \right) \) are considered as key parameters in the Fourier time series equation characterizing the nonlinear stationary response. Eq. 10 holds the ensemble of Fourier amplitudes requisite for the nonlinear stationary behavior. From Eq. 10, the determination of amplitude \( {\textbf{c}}_{1,0}^{k}\left( \omega \right) \) and \({\textbf{c}}_{1,\pm 1}^{k}\left( \omega \right) \) allows the evaluation of the magnetization parameter provided by Eq. 7. Moreover, the determination of the amplitudes and their inclusion via equation Eq.7 permit a rigorous determination of the magnetization.

Therefore, in case we treat a nanoparticles system subjected to a strong AC field and sloping at a certain angle to the particle’s easy axis, we can calculate the matrix continued fractions necessary for the description of the nonlinear AC stationary biaxial superparamagnetic particles’ response. Surprisingly, these calculations continue to be valid for AC fields of different strengths, supporting thereby a rigorous theoretical foundation susceptible to allow a reliable comparison with experimental findings especially in case the theory of perturbation is no longer appropriate.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouari, B., Rekik, N., Salman, S. et al. Unveiling the effects of azimuthal angle and superimposed magnetic bias fields on the nonlinear magnetization dynamics of superparamagnetic nanoparticles. Eur. Phys. J. Plus 139, 267 (2024). https://doi.org/10.1140/epjp/s13360-024-05043-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05043-z

Navigation