Skip to main content
Log in

Uncertainty relations for quantum coherence using wave packet approach in neutrino oscillations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Uncertainty relation is one of the most iconic implications of quantum physics distinguishing classical physics. It demonstrates the inherent uncertainty of nature from the information theory perspectives. In this work, we investigate the uncertainty relations for quantum coherence using wave packet approach in neutrino oscillations. From e and \(\mu \) neutrino sources, the coherence-based uncertainty and two different lower bounds are analyzed in detail under the mutually unbiased bases. It is found that the uncertainty exhibits the characterization of oscillations for short distances, and the lower bound can be strengthened by the Holevo quantity and the mutual information in neutrino oscillations. Particularly, the gap of the improved coherence-based uncertainty relation become smaller with the growth of entanglement for the neutrino-flavor state. Furthermore, compared to the entropy-based uncertainty relations, it shows that coherence-based uncertainty is inversely correlated with the entropy-based uncertainty, which can provide a feasible physical explanation for the uncertainty relations for quantum coherence. The results could pave the theoretical foundation for further application of neutrino oscillations on quantum information science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

There are no data associated in the manuscript.

References

  1. B. Pontecorvo, Sov. Phys. JETP 7, 172 (1958)

    Google Scholar 

  2. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962)

    Article  ADS  CAS  Google Scholar 

  3. R. Davis Jr., D.S. Harmer, K.C. Hoffman, Phys. Rev. Lett. 20, 1205 (1968)

    Article  ADS  CAS  Google Scholar 

  4. K. Abe, Super-Kamiokande Collaboration et al., Phys. Rev. D 94, 052010 (2016)

  5. M. Agostini, K. Altenmuller, BOREXINO Collaboration et al., Nature 562, 505 (2018)

    Article  ADS  Google Scholar 

  6. M.G. Aartsen, IceCube Collaboration et al., Phys. Rev. D 91, 072004 (2015)

    Article  ADS  Google Scholar 

  7. T. Araki, KamLAND Collaboration et al., Phys. Rev. Lett. 94, 081801 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. F.P. An, Daya Bay Collaboration et al., Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  PubMed  Google Scholar 

  9. M.H. Ahn, K2K Collaboration et al., Phys. Rev. D 74, 072003 (2006)

    Article  ADS  Google Scholar 

  10. P. Adamson, MINOS Collaboration et al., Phys. Rev. Lett. 107, 181802 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. K. Abe, T2K Collaboration et al., Phys. Rev. Lett. 107, 041801 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  12. F. Feruglio, MINOS Collaboration, Eur. Phys. J. C 75, 373 (2015)

    Article  ADS  PubMed  Google Scholar 

  13. D.G. Michael et al., Phys. Rev. Lett. 97, 191801 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. F.P. An, Daya Bay Collaboration et al., Phys. Rev. Lett. 115, 111802 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. A.B. Sousa, MINOS and MINOS+ Collaborations, AIP Conf. Proc. 1666, 110004 (2015)

    Article  Google Scholar 

  16. L. Camilleri, E. Lisi, J.F. Wilkerson, Annu. Rev. Nucl. Part Sci. 58, 343 (2008)

    Article  ADS  CAS  Google Scholar 

  17. H. Duan, G.M. Fuller, Y.-Z. Qian, Nucl. Part. Sci. 60, 569 (2010)

    Article  ADS  CAS  Google Scholar 

  18. M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, JHEP 1411, 052 (2014)

    Article  ADS  Google Scholar 

  19. M. Bustamante, J.F. Beacom, W. Winter, Phys. Rev. Lett. 115, 161302 (2015)

    Article  ADS  PubMed  Google Scholar 

  20. M. Blasone, F. Dell’Anno, S. De Siena, M. Di Mauro, F. Illuminati, Phys. Rev. D 77, 096002 (2008)

    Article  ADS  Google Scholar 

  21. S. Banerjee, A.K. Alok, R. Srikanth, B.C. Hiesmayr, Eur. Phys. J. C 75, 487 (2015)

    Article  ADS  PubMed  Google Scholar 

  22. A.K. Alok, S. Banerjee, S.U. Sankar, Nucl. Phys. B 909, 65 (2016)

    Article  ADS  CAS  Google Scholar 

  23. Q. Fu, X. Chen, Eur. Phys. J. C 77, 775 (2017)

    Article  ADS  Google Scholar 

  24. X.-K. Song, Y.Q. Huang, J.J. Ling, M.-H. Yung, Phys. Rev. A 98, 050302(R) (2018)

    Article  ADS  Google Scholar 

  25. M. Blasone, F. Dell’Anno, S. De Siena, F. Illuminati, Europhys. Lett. 106, 30002 (2014)

    Article  ADS  Google Scholar 

  26. F. Ming, X.-K. Song, J.-J. Ling, L. Ye, D. Wang, Eur. Phys. J. C 80, 275 (2020)

    Article  ADS  CAS  Google Scholar 

  27. D. Wang, F. Ming, X.-K. Song, L. Ye, J.-L. Chen, Eur. Phys. J. C 80, 800 (2020)

    Article  ADS  CAS  Google Scholar 

  28. Daya Bay Collaborationa, Eur. Phys. J. C 77, 606 (2017)

    Article  ADS  Google Scholar 

  29. M. Blasone, S. De Siena, C. Matrella, Eur. Phys. J. C 81, 660 (2021)

    Article  ADS  CAS  Google Scholar 

  30. D. Gangopadhyay, D. Home, A.S. Roy, Phys. Rev. A 88, 022115 (2013)

    Article  ADS  Google Scholar 

  31. J.A. Formaggio, D.I. Kaiser, M.M. Murskyj, T.E. Weiss, Phys. Rev. Lett. 117, 050402 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. D. Gangopadhyay, A.S. Roy, Eur. Phys. J. C 77, 260 (2017)

    Article  ADS  Google Scholar 

  33. M. Blasone, F. Dell’Anno, S. De Siena, F. Illuminati, Europhys. Lett. 85, 50002 (2009)

    Article  ADS  Google Scholar 

  34. W. Heisenberg, Z. Physik 43, 172 (1927)

    Article  ADS  Google Scholar 

  35. H.P. Robertson, Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  36. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  37. K. Kraus, Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. H. Maassen, J.B.M. Uffink, Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  39. M. Berta, M. Christandl, R. Colbeck, J.M. Renes, R. Renner, Nat. Phys. 6, 659 (2010)

    Article  CAS  Google Scholar 

  40. A.K. Pati, M.M. Wilde, A.R. Usha Devi, A.K. Rajagopal, Sudha, Phys. Rev. A 86, 042105 (2012)

  41. P.J. Coles, M. Piani, Phys. Rev. A 89, 022112 (2014)

    Article  ADS  Google Scholar 

  42. F. Adabi, S. Salimi, S. Haseli, Phys. Rev. A 93, 062123 (2016)

    Article  ADS  Google Scholar 

  43. F. Ming, D. Wang, X.-G. Fan, W.-N. Shi, L. Ye, J.-L. Chen, Phys. Rev. A 102, 012206 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Q.-H. Zhang, S.-M. Fei, Phys. Rev. A 108, 012211 (2023)

    Article  ADS  CAS  Google Scholar 

  45. H. Dolatkhah, S. Haseli, S. Salimi, A.S. Khorashad, Phys. Rev. A 102, 052227 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. R. Prevedel, D.R. Hamel, R. Colbeck, K. Fisher, K.J. Resch, Nat. Phys. 7, 757 (2011)

    Article  CAS  Google Scholar 

  47. C.F. Li, J.S. Xu, X.Y. Xu, K. Li, G.C. Guo, Nat. Phys. 7, 752 (2011)

    Article  CAS  Google Scholar 

  48. A. Winter, D. Yang, Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  PubMed  Google Scholar 

  49. T. Baumgratz, M. Cramer, M.B. Plenio, Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. U. Singh, A.K. Pati, M.N. Bera, Mathematics 4, 47 (2016)

    Article  Google Scholar 

  51. X. Yuan, G. Bai, T. Peng, X. Ma, Phys. Rev. A 96, 032313 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  52. W.M. Lv, C. Zhang, X.M. Hu, H. Cao, J. Wang, Y.F. Huang, B.H. Liu, C.F. Li, G.C. Guo, Phys. Rev. A 98, 062337 (2018)

    Article  ADS  CAS  Google Scholar 

  53. Z.-Y. Ding, H. Yang, D. Wang, H. Yuan, J. Yang, L. Ye, Phys. Rev. A 101, 032101 (2020)

    Article  ADS  CAS  Google Scholar 

  54. H.J. Mu, Y.M. Li, Phys. Rev. A 102, 022217 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  55. H. Dolatkhah, S. Haseli, S. Salimi, A.S. Khorashad, EPL 132, 50008 (2020)

    Article  ADS  CAS  Google Scholar 

  56. S.-L. Luo, Y. Sun, Commun. Theor. Phys. 71, 1443 (2019)

    Article  ADS  Google Scholar 

  57. X.-G. Fan, Z.-Y. Ding, H. Yang, J. He, L. Ye, Laser Phys. Lett. 16, 085203 (2019)

    Article  ADS  CAS  Google Scholar 

  58. A.E. Rastegin, Phys. Scr. 98, 015107 (2023)

    Article  ADS  CAS  Google Scholar 

  59. X.Q. Li, F.G. Zhang, Int. J. Theor. Phys. 63, 12 (2024)

    Article  Google Scholar 

  60. F. Liu, F. Li, J. Chen, W. Xing, Quantum Inf. Process. 15, 3459 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  61. H. Dolatkhah, S. Haseli, S. Salimi, A.S. Khorashad, Quantum Inf. Process. 18, 13 (2019)

    Article  ADS  Google Scholar 

  62. F.G. Zhang, Y.M. Li, Sci. China-Phys. Mech. 61, 080312 (2018)

    Article  ADS  Google Scholar 

  63. A.E. Rastegin, Front. Phys. 13, 130304 (2018)

    Article  Google Scholar 

  64. F.G. Zhang, Y.M. Li, Chin. Phys. B 27, 090301 (2018)

    Article  ADS  Google Scholar 

  65. F.G. Zhang, Commun. Theor. Phys. 74, 015102 (2022)

    Article  ADS  Google Scholar 

  66. C. Giunti, Found. Phys. Lett. 17, 103 (2004)

    Article  Google Scholar 

  67. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12205073, 12075001, 61601002, and 11247009), University Natural Sciences Research Project of Anhui Province (Project Numbers: KJ2021A0989 and 2022AH051807), Key Research and Development Project of Anhui Province (Grant No. 2022b13020004), the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701), Talent Research Fund of Hefei University (Grant Nos. 21-22RC04 and 21-22RC03), and the Key Discipline of Hefei University (Grant No. 2018xk03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ming.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, F., Fang, BL., Hu, X. et al. Uncertainty relations for quantum coherence using wave packet approach in neutrino oscillations. Eur. Phys. J. Plus 139, 229 (2024). https://doi.org/10.1140/epjp/s13360-024-05005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05005-5

Navigation