Skip to main content
Log in

One-loop effective action up to dimension eight: integrating out heavy scalar(s)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present the one-loop effective action up to dimension eight after integrating out degenerate scalars using the Heat-Kernel method. The result is provided without assuming any specific form of either UV or low energy theories, i.e., universal. In this paper, we consider the complete effects of only heavy scalar propagators in the loops. We also verify part of the results using the covariant diagram technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

Notes

  1. Also known as the Hadamard - Minackshisundaram - De Witt - Seeley (HMDS) coefficients [76,77,78,79].

  2. It is important to note that for HKC computation at coinciding point, one must not set \(z=0\) in Eq. (3.2) as \(\{D_\mu (z\cdot D) \,b_k(x,y)\}|_{z=0} = D_\mu \, b_k(x,y)|_{z=0} \ne 0\).

  3. From now onwards we will drop the superscript E and will use D uniformly.

  4. This division is necessary to eliminate the overcounting when different operator structures under trace give rise to the same diagram.

  5. It should be noted that if a specific diagram and its mirror image cannot be superimposed onto each other even after rotation under trace (see e.g. the second diagram in Table 5), these diagrams are connected via Hermitian conjugation. The conjugate diagrams receive exactly similar contributions as their parent diagrams after the expansion of the covariant structures, so we avoid writing them separately.

  6. Under trace, as cyclic permutations are equivalent, a commutator is zero. Total derivatives can be written as a commutator, i.e., \((D_\mu \;U)=[D_\mu ,U]\) and hence are zero under a trace. Along with the identity given in Eq. (A.8) we further use the Bianchi identity, \(G_{\rho \sigma ;\mu }+G_{\sigma \mu ;\rho }+G_{\mu \rho ;\sigma } = 0\), to simplify terms.

References

  1. S. Weinberg, Effective gauge theories. Phys. Lett. B 91, 51–55 (1980)

    Article  ADS  Google Scholar 

  2. H. Georgi, Effective field theory. Ann. Rev. Nucl. Part. Sci. 43, 209–252 (1993)

    Article  ADS  CAS  Google Scholar 

  3. A.V. Manohar, Introduction to effective field theories. Les Houches Lect. Notes 108 (2020). arXiv:1804.05863

  4. T. Cohen, As scales become separated: lectures on effective field theory. PoS TASI2018, 011 (2019). arXiv:1903.03622

  5. I. Brivio, M. Trott, The standard model as an effective field theory. Phys. Rept. 793, 1–98 (2019). arXiv:1706.08945

  6. G. Isidori, F. Wilsch, D. Wyler, The standard model effective field theory at work. arXiv:2303.16922

  7. V. Gherardi, D. Marzocca, E. Venturini, Matching scalar leptoquarks to the SMEFT at one loop. JHEP 07, 225 (2020). arXiv:2003.12525

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Chala, A. Díaz-Carmona, G. Guedes, A Green’s basis for the bosonic SMEFT to dimension 8. JHEP 05, 138 (2022). arXiv:2112.12724

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Georgi, On-shell effective field theory. Nucl. Phys. B 361, 339–350 (1991)

    Article  ADS  Google Scholar 

  10. A. Barzinji, M. Trott, A. Vasudevan, Equations of motion for the standard model effective field theory: theory and applications. Phys. Rev. D 98(11), 116005 (2018). arXiv:1806.06354

  11. J.C. Criado, M. Pérez-Victoria, Field redefinitions in effective theories at higher orders. JHEP 03, 038 (2019). arXiv:1811.09413

    Article  ADS  MathSciNet  Google Scholar 

  12. U. Banerjee, J. Chakrabortty, C. Englert, S.U. Rahaman, M. Spannowsky, Integrating out heavy scalars with modified equations of motion: matching computation of dimension-eight SMEFT coefficients. Phys. Rev. D 107(5), 055007 (2023). arXiv:2210.14761

  13. B. Henning, X. Lu, T. Melia, H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, ...: higher dimension operators in the SM EFT. JHEP 08, 016 (2017). arXiv:1512.03433

  14. L. Lehman, A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods. JHEP 02, 081 (2016). arXiv:1510.00372

    Article  ADS  MathSciNet  Google Scholar 

  15. B. Henning, X. Lu, T. Melia, H. Murayama, Operator bases, \(S\)-matrices, and their partition functions. JHEP 10, 199 (2017). arXiv:1706.08520

    Article  ADS  MathSciNet  Google Scholar 

  16. L. Lehman, A. Martin, Hilbert series for constructing Lagrangians: expanding the phenomenologist’s toolbox. Phys. Rev. D 91, 105014 (2015). arXiv:1503.07537

    Article  ADS  MathSciNet  Google Scholar 

  17. R.M. Fonseca, Enumerating the operators of an effective field theory. Phys. Rev. D 101(3), 035040 (2020). arXiv:1907.12584

  18. R.M. Fonseca, The Sym2Int program: going from symmetries to interactions. J. Phys. Conf. Ser. 873(1), 012045 (2017). arXiv:1703.05221

  19. B. Gripaios, D. Sutherland, DEFT: a program for operators in EFT. JHEP 01, 128 (2019). arXiv:1807.07546

    Article  ADS  MathSciNet  Google Scholar 

  20. J.C. Criado, BasisGen: automatic generation of operator bases. Eur. Phys. J. C 79(3), 256 (2019). arXiv:1901.03501

  21. C.B. Marinissen, R. Rahn, W.J. Waalewijn, ..., 83106786, 114382724, 1509048322, 2343463290, 27410087742, ... efficient hilbert series for effective theories. Phys. Lett. B 808, 135632 (2020). arXiv:2004.09521

  22. U. Banerjee, J. Chakrabortty, S. Prakash, S.U. Rahaman, Characters and group invariant polynomials of (super)fields: road to Lagrangian. Eur. Phys. J. C 80(10), 938 (2020). arXiv:2004.12830

  23. R.V. Harlander, T. Kempkens, M.C. Schaaf, The standard model effective field theory up to mass dimension 12. arXiv:2305.06832

  24. H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, Y.-H. Zheng, Operator bases in effective field theories with sterile neutrinos: d \(\le\) 9. JHEP 11, 003 (2021). arXiv:2105.09329

    Article  ADS  MathSciNet  Google Scholar 

  25. H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, Y.-H. Zheng, Operators for generic effective field theory at any dimension: on-shell amplitude basis construction. JHEP 04, 140 (2022). arXiv:2201.04639

    ADS  MathSciNet  Google Scholar 

  26. W. Buchmüller, D. Wyler, Effective lagrangian analysis of new interactions and flavour conservation. Nucl. Phys. B 268(3), 621–653 (1986)

    Article  ADS  Google Scholar 

  27. B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-six terms in the standard model Lagrangian. JHEP 10, 085 (2010). arXiv:1008.4884

    Article  ADS  Google Scholar 

  28. L. Lehman, Extending the standard model effective field theory with the complete set of dimension-7 operators. Phys. Rev. D 90(12), 125023 (2014). arXiv:1410.4193

  29. C.W. Murphy, Dimension-8 operators in the standard model effective field theory. arXiv:2005.00059

  30. H.-L. Li, Z. Ren, J. Shu, M.-L. Xiao, J.-H. Yu, Y.-H. Zheng, Complete set of dimension-8 operators in the standard model effective field theory. arXiv:2005.00008

  31. H.-L. Li, Z. Ren, M.-L. Xiao, J.-H. Yu, Y.-H. Zheng, Complete set of dimension-9 operators in the standard model effective field theory. arXiv:2007.07899

  32. Y. Liao, X.-D. Ma, An explicit construction of the dimension-9 operator basis in the standard model effective field theory. arXiv:2007.08125

  33. Anisha, S. Das Bakshi, J. Chakrabortty, S. Prakash, Hilbert series and plethystics: paving the path towards 2HDM- and MLRSM-EFT. JHEP 09, 035 (2019). arXiv:1905.11047

  34. U. Banerjee, J. Chakrabortty, S. Prakash, S.U. Rahaman, M. Spannowsky, Effective operator bases for beyond standard model scenarios: an EFT compendium for discoveries. JHEP 01, 028 (2021). arXiv:2008.11512

    Article  ADS  MathSciNet  Google Scholar 

  35. N.P. Hartland, F. Maltoni, E.R. Nocera, J. Rojo, E. Slade, E. Vryonidou, C. Zhang, A Monte Carlo global analysis of the standard model effective field theory: the top quark sector. JHEP 04, 100 (2019). arXiv:1901.05965

    Article  ADS  Google Scholar 

  36. I. Brivio, S. Bruggisser, F. Maltoni, R. Moutafis, T. Plehn, E. Vryonidou, S. Westhoff, C. Zhang, O new physics, where art thou? A global search in the top sector. JHEP 02, 131 (2020). arXiv:1910.03606

    Article  ADS  Google Scholar 

  37. I. Brivio, Y. Jiang, M. Trott, The SMEFTsim package, theory and tools. JHEP 12, 070 (2017). arXiv:1709.06492

    Article  ADS  Google Scholar 

  38. J. Ellis, M. Madigan, K. Mimasu, V. Sanz, T. You, Top, Higgs, diboson and electroweak fit to the standard model effective field theory. JHEP 04, 279 (2021). arXiv:2012.02779

  39. E Bagnaschi, J. Ellis, M. Madigan, K. Mimasu, V. Sanz, T. You, SMEFT analysis of \(m_{W}\). arXiv:2204.05260

  40. J. Ellis, C.W. Murphy, V. Sanz, T. You, Updated global SMEFT fit to Higgs, diboson and electroweak data. JHEP 06, 146 (2018). arXiv:1803.03252

    Article  ADS  Google Scholar 

  41. S. Das Bakshi, J. Chakrabortty, S. Prakash, S.U. Rahaman, M. Spannowsky, EFT diagrammatica: UV roots of the CP-conserving SMEFT. JHEP 06, 033 (2021). arXiv:2103.11593

  42. W. Naskar, S. Prakash, S.U. Rahaman, EFT Diagrammatica II: tracing the UV origin of bosonic D6 CPV and D8 SMEFT operators. arXiv:2205.00910

  43. R. Cepedello, F. Esser, M. Hirsch, V. Sanz, Mapping the SMEFT to discoverable models. JHEP 09, 229 (2022). arXiv:2207.13714

    Article  ADS  MathSciNet  Google Scholar 

  44. G. Guedes, P. Olgoso, J. Santiago, Towards the one loop IR/UV dictionary in the SMEFT: one loop generated operators from new scalars and fermions. arXiv:2303.16965

  45. J. Gargalionis, R.R. Volkas, Exploding operators for Majorana neutrino masses and beyond. JHEP 01, 074 (2021). arXiv:2009.13537

    Article  ADS  MathSciNet  Google Scholar 

  46. H.-L. Li, Y.-H. Ni, M.-L. Xiao, J.-H. Yu, The bottom-up EFT: complete UV resonances of the SMEFT operators. arXiv:2204.03660

  47. J. Chakrabortty, S. Prakash, S.U. Rahaman, M. Spannowsky, Uncovering the root of LEFT in SMEFT. EPL 136(1), 11002 (2021). arXiv:2011.00859

  48. Anisha, S. Das Bakshi, J. Chakrabortty, S. K. Patra, Connecting electroweak-scale observables to BSM physics through EFT and Bayesian statistics. Phys. Rev. D 103(7), 076007 (2021). arXiv:2010.04088

  49. Anisha, S. Das Bakshi, S. Banerjee, A. Biekötter, J. Chakrabortty, S. Kumar Patra, M. Spannowsky, Effective limits on single scalar extensions in the light of recent LHC data. arXiv:2111.05876

  50. S. Das Bakshi, J. Chakrabortty, M. Spannowsky, Classifying standard model extensions effectively with precision observables. arXiv:2012.03839

  51. B. Henning, X. Lu, H. Murayama, How to use the standard model effective field theory. JHEP 01, 023 (2016). arXiv:1412.1837

    Article  ADS  MathSciNet  Google Scholar 

  52. A. Drozd, J. Ellis, J. Quevillon, T. You, The universal one-loop effective action. JHEP 03, 180 (2016). arXiv:1512.03003

    Article  ADS  Google Scholar 

  53. S.A.R. Ellis, J. Quevillon, T. You, Z. Zhang, Mixed heavy–light matching in the universal one-loop effective action. Phys. Lett. B 762, 166–176 (2016). arXiv:1604.02445

  54. F. del Aguila, Z. Kunszt, J. Santiago, One-loop effective lagrangians after matching. Eur. Phys. J. C 76(5), 244 (2016). arXiv:1602.00126

  55. S.A.R. Ellis, J. Quevillon, T. You, Z. Zhang, Extending the universal one-loop effective action: heavy-light coefficients. JHEP 08, 054 (2017). arXiv:1706.07765

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Krämer, B. Summ, A. Voigt, Completing the scalar and fermionic universal one-loop effective action. JHEP 01, 079 (2020). arXiv:1908.04798

    Article  ADS  MathSciNet  Google Scholar 

  57. A. Angelescu, P. Huang, Integrating out new fermions at one loop. JHEP 01, 049 (2021). arXiv:2006.16532

    Article  ADS  MathSciNet  Google Scholar 

  58. S.A.R. Ellis, J. Quevillon, P.N.H. Vuong, T. You, Z. Zhang, The fermionic universal one-loop effective action. JHEP 11, 078 (2020). arXiv:2006.16260

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Das Bakshi, J. Chakrabortty, S.K. Patra, CoDEx: Wilson coefficient calculator connecting SMEFT to UV theory. Eur. Phys. J. C 79(1), 21 (2019). arXiv:1808.04403

  60. J. Fuentes-Martín, M. König, J. Pagès, A.E. Thomsen, F. Wilsch, A proof of concept for matchete: an automated tool for matching effective theories. arXiv:2212.04510

  61. A. Carmona, A. Lazopoulos, P. Olgoso, J. Santiago, Matchmakereft: automated tree-level and one-loop matching. SciPost Phys. 12(6), 198 (2022). arXiv:2112.10787

  62. T. Cohen, X. Lu, Z. Zhang, STrEAMlining EFT matching. SciPost Phys. 10(5), 098 (2021). arXiv:2012.07851

  63. J. Fuentes-Martin, M. König, J. Pagès, A.E. Thomsen, F. Wilsch, SuperTracer: a calculator of functional supertraces for one-loop EFT matching. JHEP 04, 281 (2021). arXiv:2012.08506

    Article  ADS  MathSciNet  Google Scholar 

  64. J.C. Criado, MatchingTools: a Python library for symbolic effective field theory calculations. Comput. Phys. Commun. 227, 42–50 (2018). arXiv:1710.06445

  65. M.K. Gaillard, The effective one loop Lagrangian with derivative couplings. Nucl. Phys. B 268, 669–692 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  66. O. Cheyette, Effective action for the standard model with large Higgs mass. Nucl. Phys. B 297, 183–204 (1988)

    Article  ADS  Google Scholar 

  67. L.-H. Chan, Effective-action expansion in perturbation theory. Phys. Rev. Lett. 54, 1222–1225 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. B. Henning, X. Lu, H. Murayama, One-loop matching and running with covariant derivative expansion. JHEP 01, 123 (2018). arXiv:1604.01019

    Article  ADS  MathSciNet  Google Scholar 

  69. S. Dittmaier, S. Schuhmacher, M. Stahlhofen, Integrating out heavy fields in the path integral using the background-field method: general formalism. Eur. Phys. J. C 81(9), 826 (2021). arXiv:2102.12020

  70. J. Fuentes-Martin, J. Portoles, P. Ruiz-Femenia, Integrating out heavy particles with functional methods: a simplified framework. JHEP 09, 156 (2016). arXiv:1607.02142

    Article  ADS  MathSciNet  Google Scholar 

  71. T. Cohen, X. Lu, Z. Zhang, Functional prescription for EFT matching. JHEP 02, 228 (2021). arXiv:2011.02484

    Article  ADS  MathSciNet  Google Scholar 

  72. A. van de Ven, Explicit counteraction algorithms in higher dimensions. Nucl. Phys. B 250(1), 593–617 (1985)

    ADS  Google Scholar 

  73. Z. Zhang, Covariant diagrams for one-loop matching. JHEP 05, 152 (2017). arXiv:1610.00710

    Article  ADS  MathSciNet  Google Scholar 

  74. G. von Gersdorff, K. Santos, New covariant Feynman rules for effective field theories. J. High Energy Phys. 2023, 25 (2023). arXiv:2212.07451

  75. S. Minakshisundaram, A. Pleijel, Some properties of the eigenfunctions of the Laplace operator on Riemannian manifolds. Can. J. Math. 1, 242–256 (1949)

    Article  MathSciNet  Google Scholar 

  76. S. Minakshisundaram, Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. 17, 158–165 (1953)

    MathSciNet  Google Scholar 

  77. J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations Dover phoenix editions. (Dover Publications, New York, 2003)

    Google Scholar 

  78. B.S. DeWitt, Dynamical theory of groups and fields. Conf. Proc. C 630701, 585–820 (1964)

    MathSciNet  Google Scholar 

  79. R. Seeley, The resolvent of an elliptic boundary problem. Am. J. Math. 91(4), 889–920 (1969)

    Article  MathSciNet  Google Scholar 

  80. J.S. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  81. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rept. 388, 279–360 (2003). arxiv:hep-th/0306138

    Article  ADS  MathSciNet  CAS  Google Scholar 

  82. I.G. Avramidi, Heat kernel approach in quantum field theory. Nucl. Phys. B Proc. Suppl. 104, 3–32 (2002). arxiv:math-ph/0107018

    Article  ADS  MathSciNet  CAS  Google Scholar 

  83. I.G. Avramidi, Heat Kernel Method and Its Applications (Springer International Publishing, Cham, 2015)

    Book  Google Scholar 

  84. K. Kirsten, Spectral functions in mathematics and physics (2001)

  85. S.A. Fulling, Aspects of Quantum Field Theory in Curved Space-time, vol. 17 (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  86. I.G. Avramidi, The Heat kernel approach for calculating the effective action in quantum field theory and quantum gravity. arxiv:hep-th/9509077

  87. I. Avramidi, A covariant technique for the calculation of the one-loop effective action. Nucl. Phys. B 355(3), 712–754 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  88. A.A. Bel’kov, A.V. Lanyov, A. Schaale, Calculation of heat-kernel coefficients and usage of computer algebra. Comput. Phys. Commun. 95(2), 123–130 (1996)

    Article  ADS  Google Scholar 

  89. D. Fliegner, M.G. Schmidt, C. Schubert, The Higher derivative expansion of the effective action by the string inspired method. Part 1. Z. Phys. C 64, 111–116 (1994). arxiv:hep-ph/9401221

  90. D. Fliegner, P. Haberl, M.G. Schmidt, C. Schubert, The Higher derivative expansion of the effective action by the string inspired method. Part 2. Ann. Phys. 264, 51–74 (1998). arxiv:hep-th/9707189

  91. S. Dawson, S. Homiller, M. Sullivan, Impact of dimension-eight SMEFT contributions: a case study. Phys. Rev. D 104(11), 115013 (2021). arXiv:2110.06929

  92. C. Hays, A. Martin, V. Sanz, J. Setford, On the impact of dimension-eight SMEFT operators on Higgs measurements. JHEP 02, 123 (2019). arXiv:1808.00442

    Article  ADS  MathSciNet  Google Scholar 

  93. T. Corbett, A. Helset, A. Martin, M. Trott, EWPD in the SMEFT to dimension eight. JHEP 06, 076 (2021). arXiv:2102.02819

    Article  ADS  MathSciNet  Google Scholar 

  94. S. Das Bakshi, A. Díaz-Carmona, Renormalisation of SMEFT bosonic interactions up to dimension eight by LNV operators. arXiv:2301.07151

  95. S. Das Bakshi, M. Chala, A. Díaz-Carmona, G. Guedes, Towards the renormalisation of the standard model effective field theory to dimension eight: bosonic interactions II. Eur. Phys. J. Plus 137(8), 973 (2022). arXiv:2205.03301

  96. M. Chala, G. Guedes, M. Ramos, J. Santiago, Towards the renormalisation of the Standard Model effective field theory to dimension eight: bosonic interactions I. SciPost Phys. 11, 065 (2021). arXiv:2106.05291

    Article  ADS  MathSciNet  Google Scholar 

  97. S. Alioli, R. Boughezal, E. Mereghetti, F. Petriello, Novel angular dependence in Drell-Yan lepton production via dimension-8 operators. Phys. Lett. B 809, 135703 (2020). arXiv:2003.11615

    Article  CAS  Google Scholar 

  98. C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions. JHEP 02, 101 (2014). arXiv:1308.6323

    Article  ADS  Google Scholar 

  99. J. Ellis, H.-J. He, R.-Q. Xiao, Probing new physics in dimension-8 neutral gauge couplings at e\(^{+}\)e\(^-\) colliders. Sci. China Phys. Mech. Astron. 64(2), 221062 (2021). arXiv:2008.04298

  100. C. Hays, A. Helset, A. Martin, M. Trott, Exact SMEFT formulation and expansion to \(\cal{O} (v^4/\Lambda ^4)\). JHEP 11, 087 (2020). arXiv:2007.00565

    Article  ADS  Google Scholar 

  101. S. Dawson, D. Fontes, C. Quezada-Calonge, J.J. Sanz-Cillero, Matching the 2HDM to the HEFT and the SMEFT: decoupling and perturbativity. arXiv:2305.07689

  102. S. Dawson, D. Fontes, S. Homiller, M. Sullivan, Role of dimension-eight operators in an EFT for the 2HDM. Phys. Rev. D 106(5), 055012 (2022). arXiv:2205.01561

  103. J. Ellis, S.-F. Ge, H.-J. He, R.-Q. Xiao, Probing the scale of new physics in the \(ZZ\gamma\) coupling at \(e^+e^-\) colliders. Chin. Phys. C 44(6), 063106 (2020). arXiv:1902.06631

  104. T. Corbett, J. Desai, O.J.P. Éboli, M.C. Gonzalez-Garcia, M. Martines, P. Reimitz, Impact of dimension-eight SMEFT operators in the EWPO and Triple Gauge Couplings analysis in Universal SMEFT. arXiv:2304.03305

  105. J. Ellis, K. Mimasu, F. Zampedri, Dimension-8 SMEFT analysis of minimal scalar field extensions of the standard model. arXiv:2304.06663

  106. C. Degrande, H.-L. Li, Impact of dimension-8 SMEFT operators on diboson productions. arXiv:2303.10493

  107. U. Banerjee, J. Chakrabortty, C. Englert, W. Naskar, S. U. Rahaman, M. Spannowsky, EFT, decoupling, Higgs mixing and all that jazz. arXiv:2303.05224

  108. B. Grinstein, M.B. Wise, Operator analysis for precision electroweak physics. Phys. Lett. B 265, 326–334 (1991)

    Article  ADS  CAS  Google Scholar 

  109. H.H. Patel, Package-X: a mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun. 197, 276–290 (2015). arXiv:1503.01469

  110. H.H. Patel, Package-X 2.0: a mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun. 218, 66–70 (2017). arXiv:1612.00009

Download references

Acknowledgements

We acknowledge the useful discussions with Diptarka Das and Nilay Kundu. The authors would also like to acknowledge the initial discussions with Priyank Kaushik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joydeep Chakrabortty.

Appendices

Appendix A: Computation of operators \({\mathcal {O}}(D^4 U^3)\): a detailed example

Based on the methodology discussed in Sect. 3, we perform, here, an explicit calculation of the operators class \({\mathcal {O}}\left( D^4 U^3\right)\) for the sake of detailed demonstration. To compute \({\mathcal {O}}\left( D^4 U^3\right)\), we obtain the following necessary relations using Eq. (3.8).

$$\begin{aligned}&[b_2] \left[\!\left[ U^0 \right]\!\right] ={\mathcal {O}}\left( D^4 U^0\right) = -\frac{1}{12}\, \left\{ T_{(4)}b_0\right\} _{z=0}, \end{aligned}$$
(A.1)
$$\begin{aligned}&[b_3] \left[\!\left[ U^1 \right]\!\right] ={\mathcal {O}}\left( D^4 U^1\right) = U\,[b_2] \left[\!\left[ U^0 \right]\!\right] + \left\{ \frac{1}{2} D^2 \left( U\,b_1 \right) + \frac{1}{10} \left( D^4 \left( U\,b_0 \right) - T_{(4)}b_1 \right) \right\} _{z=0}\left[\!\left[ U^1 \right]\!\right] , \end{aligned}$$
(A.2)
$$\begin{aligned}&[b_4] \left[\!\left[ U^2 \right]\!\right] = {\mathcal {O}}\left( D^4 U^2\right) = U\,[b_3] \left[\!\left[ U^1 \right]\!\right] + \left\{ \frac{3}{5} D^2 \left( U\,b_2 \right) + \frac{1}{10} \left( 2\,D^4 \left( U\,b_1 \right) - T_{(4)}b_2 \right) \right\} _{z=0} \left[\!\left[ U^2 \right]\!\right] , \end{aligned}$$
(A.3)
$$\begin{aligned}&[b_5] \left[\!\left[ U^3 \right]\!\right] = {\mathcal {O}}\left( D^4 U^3\right) = U\,[b_4] \left[\!\left[ U^2 \right]\!\right] + \left\{ \frac{2}{3} D^2 \left( U\,b_3 \right) + \frac{2}{21} \left( 3\,D^4 \left( U\,b_2 \right) - T_{(4)}b_3\right) \right\} _{z=0} \left[\!\left[ U^3 \right]\!\right] . \end{aligned}$$
(A.4)

Here, we set

$$\begin{aligned} T = 0\,,\qquad T_{\mu } = 0\,,\qquad T_{(2)}=T_{\mu \mu } = 0, \end{aligned}$$

that are quite evident from Eq. (3.5). It is important to note that in the above equations, we have two different kinds of structures: (i) \(D^4\) and \(D^2\) act on \(U\,b_k\), and (ii) \(T_{(4)}\) acts on \(b_k\). Thus, our initial aim is to calculate the explicit form of these operators, first.

The actions of \(D^4\) and \(D^2\) operators on \((U\,b_k)\) are defined from Eqs. (A.2)–(A.4), as follows:

$$\begin{aligned} D^2(U\,b_k){} & {} = U_{;\mu \mu }\, b_k + 2\,U_{;\mu } D_\mu b_k + U\,D^2b_k, \end{aligned}$$
(A.5)
$$\begin{aligned} D^4(U\,b_k){} & {} = U_{;\mu \mu \nu \nu }\, b_k + 2\, U_{;\mu \nu \nu } D_\mu b_k + 2\, U_{;\nu \nu \mu } D_\mu b_k + 2\,U_{;\mu } D_{\mu \nu \nu } b_k \nonumber \\{} & {} \quad + 2\,U_{;\mu } D_{\nu \nu \mu } b_k + 4\,U_{;\nu \mu } D_{\mu \nu } b_k + 2\, U_{;\mu \mu } D^2 b_k + U\,D^4 b_k, \end{aligned}$$
(A.6)

Action of \(T_{(4)}\) can be addressed in the following form derived from Eqs. (3.5)–(3.7)

$$\begin{aligned} \begin{aligned} T_{(4)}=T_{\mu \mu \nu \nu }&= D_\mu T_{\mu \nu \nu } + R_{\mu \nu \nu ,\mu } =D_{\mu \mu } T_{\nu \nu } + D_\mu R_{\nu \nu ,\mu }+ R_{\mu \nu \nu ,\mu }\\&=D_\mu R_{\nu \nu ,\mu }+ D_\mu R_{\nu \nu ,\mu } + G_{\mu \mu }D_{\nu \nu } =2\,D_{\mu \nu } G_{\nu \mu }+ 2\,D_\mu G_{\nu \mu }D_\nu \\&= G_{\mu \nu } G_{\nu \mu } - 2\,G_{\mu \nu ;\mu } D_\nu -2\,G_{\mu \nu }D_{\mu \nu } = -2\,(G_{\mu \nu })^2 - 2\,J_\nu D_\nu . \end{aligned} \end{aligned}$$
(A.7)

In this derivation, we use the anti-symmetric nature of \(G_{\mu \nu }\) and the following identity

$$\begin{aligned} X_{;\nu \mu } = X_{;\mu \nu } + G_{\mu \nu }X - X\, G_{\mu \nu }, \end{aligned}$$
(A.8)

where X is any arbitrary tensor. This leads to our finding

$$\begin{aligned} 2\,D_{\mu \nu } G_{\mu \nu } = (G_{\mu \nu })^2. \end{aligned}$$

Now, we are ready to demonstrate the explicit computation of operators \({\mathcal {O}}\left( D^4 U^3\right)\) belonging to the HKC \(b_5\).

\(\underline{{\mathcal {O}}\left( D^4 U^0\right) }\)

\(T_{(4)}\) operator contains a derivative acting on HKCs. Hence, to calculate \([b_2]_{U^0}\), we, first, need to calculate \(D_\nu b_0 |_{z=0}\). From Eq. (3.3), we find

$$\begin{aligned} \begin{aligned} D_\nu b_0|_{z=0} = -T_\nu b_0|_{z=0} = 0. \end{aligned} \end{aligned}$$
(A.9)

This provides \({\mathcal {O}}\left( D^4U^0\right)\), directly from Eq. (A.1), as

$$\begin{aligned} \begin{aligned}{}[b_2] \left[\!\left[ U^0 \right]\!\right] ={\mathcal {O}}\left( D^4 U^0\right)&= \frac{1}{6}\, \Big \{(G_{\mu \nu })^2 b_0 + J_\nu D_\nu b_0\Big \}_{z=0} = \frac{1}{6}\, (G_{\mu \nu })^2. \end{aligned} \end{aligned}$$
(A.10)

\(\underline{{\mathcal {O}}\left( D^4 U^1\right) }\)

Next, to compute \({\mathcal {O}} (D^4 U^1),\) we calculate the necessary derivatives of HKCs using Eqs. (3.3)-(3.7).

$$\begin{aligned}{} & {} D^2 b_0\Big |_{z=0} = D_{\mu \mu } b_0\Big |_{z=0} = -\frac{1}{2} T_{\mu \mu } b_0\Big |_{z=0} = 0. \end{aligned}$$
(A.11)
$$\begin{aligned}{} & {} D_{\mu \nu } b_0\Big |_{z=0} = -\frac{1}{2} T_{\mu \nu } b_0\Big |_{z=0} = -\frac{1}{2}\, \{D_\mu T_{\nu } + R_{\nu ,\mu }\} b_0 \Big |_{z=0} = \frac{1}{2}\, G_{\mu \nu }. \end{aligned}$$
(A.12)
$$\begin{aligned}{} {} D_{\mu \nu \nu } b_0\Big |_{z=0}& = -\frac{1}{3} T_{\mu \nu \nu } b_0\Big |_{z=0} = -\frac{1}{3}\, \{D_\mu T_{\nu \nu } + R_{\nu \nu ,\mu }\} b_0 \Big |_{z=0} = -\frac{1}{3}\, \{D_\nu G_{\nu \mu } + G_{\nu \mu } D_\nu \} b_0 \Big |_{z=0},\nonumber \\{} & {} = -\frac{1}{3}\, \{G_{\nu \mu ;\nu } + 2\,G_{\nu \mu } D_\nu \} b_0 \Big |_{z=0} -\frac{1}{3}\,J_\mu . \qquad \qquad \quad \end{aligned}$$
(A.13)
$$\begin{aligned}{} {} D_{\nu \nu \mu } b_0\Big |_{z=0} &= -\frac{1}{3} T_{\nu \nu \mu } b_0\Big |_{z=0} = -\frac{1}{3}\, \{D_\nu T_{\nu \mu } + R_{\nu \mu ,\nu }\} b_0 \Big |_{z=0} = -\frac{2}{3}\, D_\nu G_{\mu \nu } b_0 \Big |_{z=0},\nonumber \\{} & {} = \frac{2}{3}\, \{G_{\nu \mu ;\nu } + \,G_{\nu \mu } D_\nu \} b_0 \Big |_{z=0} = \frac{2}{3}\,J_\mu . \qquad \qquad \end{aligned}$$
(A.14)
$$\begin{aligned}{} & {} D^4 b_0\Big |_{z=0} = D_{\mu \mu \nu \nu } b_0\Big |_{z=0} = -\frac{1}{4} T_{(4)} b_0\Big |_{z=0} = \frac{1}{2}\, (G_{\mu \nu })^2. \end{aligned}$$
(A.15)
$$\begin{aligned}{} & {} [b_1] = \{U+D^2\}b_0\Big |_{z=0} = U. \end{aligned}$$
(A.16)
$$\begin{aligned}{} {} D_\mu b_1\Big |_{z=0} &= \frac{1}{2}\{D_\mu \left( U+D^2\right) b_0-T_\mu b_1\}\Big |_{z=0} = \frac{1}{2} \Big \{U_{;\mu }b_0 + U\,D_\mu b_0 + D_{\mu \nu \nu } b_0\Big \}_{z=0}, \nonumber \\{} & {} = \frac{1}{2} U_{;\mu } - \frac{1}{6} J_\mu . \end{aligned}$$
(A.17)
$$\begin{aligned}{} & {} D_{\mu \mu } b_1\Big |_{z=0} \left[\!\left[ U^0 \right]\!\right] = \frac{1}{3} \{D_{\mu \mu }\left( U+D^2\right) b_0 - T_{\mu \mu } b_1\}\Big |_{z=0} \left[\!\left[ U^0 \right]\!\right] = \frac{1}{3} D_{\mu \mu \nu \nu }b_0\Big |_{z=0} \left[\!\left[ U^0 \right]\!\right] = \frac{1}{6} (G_{\mu \nu })^2. \end{aligned}$$
(A.18)

Assembling all the contributions, computed here, in Eq. (A.2) we find

$$\begin{aligned}[b_3] \left[\!\left[ U^0 \right]\!\right] = {\mathcal {O}}\left( D^4 U^1\right) &=\frac{3}{10} U\,(G_{\mu \nu })^2 +\frac{1}{5}(G_{\mu \nu })^2 U - \frac{1}{10} U_{;\mu }J_{;\mu } + \frac{1}{10} J_{;\mu }U_{;\mu }\\&\quad+ \frac{1}{10} U_{;\mu \mu \nu \nu } + \frac{2}{10} U_{;\nu \mu }G_{\mu \nu }. \end{aligned}$$
(A.19)

\(\underline{{\mathcal {O}}\left( D^4 U^2\right) }\)

Following the similar path, we calculate the derivatives of HKCs required for the computation of operators \({\mathcal {O}}\left( D^4 U^2\right)\).

$$\begin{aligned} D_{\mu \mu } b_1|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{3} \left\{ D^2\left( U+D^2\right) b_0 - T_{\mu \mu } b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{3} \left\{ U_{;\mu \mu } b_0 + 2\,U_{;\mu } D_\mu b_0 + U\,D^2 b_0\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{3} U_{;\mu \mu }. \end{aligned}$$
(A.20)
$$\begin{aligned} D_{\mu \nu } b_1|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{3} \left\{ D_{\mu \nu }\left( U+D^2\right) b_0 - T_{\mu \nu } b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{3} \left\{ U_{;\nu \mu } b_0 + U_{;\mu } D_\nu b_0 + U_{;\nu } D_\mu b_0 + U\,D_{\mu \nu } b_0 - G_{\nu \mu }b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{3}\left\{ U_{;\nu \mu } + \frac{1}{2}U\,G_{\mu \nu } + G_{\mu \nu }U\right\} , \end{aligned}$$
(A.21)
$$\begin{aligned} D_{\mu \nu \nu } b_1|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{4} \left\{ D_{\mu \nu \nu }\left( U+D^2\right) b_0 - T_{\mu \nu \nu } b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ D_{\mu }\left( U_{;\nu \nu } b_0 + 2\,U_{;\nu }D_\nu b_0 + U\,D^2 b_0\right) - D_\nu G_{\nu \mu } b_1 - G_{\nu \mu } D_\nu b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ U_{;\nu \nu \mu } b_0 + U_{;\nu \nu } D_\mu b_0 + 2\,U_{;\nu \mu }D_\nu b_0 + 2\,U_{;\nu }D_{\mu \nu } b_0 + U_{;\mu }\,D^2 b_0\right. \nonumber \\{} & {} \left. \quad + U\,D_{\mu \nu \nu } b_0 - G_{\nu \mu ;\nu } b_1 - 2\, G_{\nu \mu }D_\nu b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ U_{;\nu \nu \mu } + U_{;\nu }G_{\mu \nu } -\frac{1}{3} U\,J_{\mu } -J_\mu U + G_{\mu \nu } U_{;\nu }\right\} . \end{aligned}$$
(A.22)
$$\begin{aligned} D_{\nu \nu \mu } b_1|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{4} \{D_{\nu \nu \mu }\left( U+D^2\right) b_0 - T_{\nu \nu \mu } b_1\}|_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ D_{\nu \nu }(U_{\mu }b_0 + U\,D_\mu b_0) - 2\,D_\nu G_{\mu \nu } b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ U_{;\mu \nu \nu }b_0 + U_{\mu } D^2 b_0 + 2\,U_{\mu \nu } D_\nu b_0 + U_{\nu \nu }\,D_\mu b_0 + U\,D_{\nu \nu \mu } b_0 \right. \nonumber \\{} & {} \left. \quad +\,2\, U_{;\nu }\,D_{\nu \mu } b_0 + 2\, G_{\nu \mu ;\nu } b_1 + 2\, G_{\nu \mu } D_\nu b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{4} \left\{ U_{;\mu \nu \nu } + \frac{2}{3}U\,J_{\mu } + U_{;\nu }G_{\nu \mu } + 2\, J_\mu U + G_{\nu \mu } U_{;\nu }\right\} . \end{aligned}$$
(A.23)
$$\begin{aligned} D^4\,b_1|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{5} \left\{ D_{\mu \mu \nu \nu }\left( U+D^2\right) b_0 - T_{\mu \mu \nu \nu } b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{5} \left\{ U_{;\mu \mu \nu \nu } b_0 + 2\, U_{;\mu \nu \nu } D_\mu b_0 + 2\, U_{;\nu \nu \mu } D_\mu b_0 + 2\,U_{;\mu } D_{\mu \nu \nu } b_0 + 2\,U_{;\mu } D_{\nu \nu \mu } b_0 \right. \nonumber \\{} & {} \left. \quad +\, 4\,U_{;\nu \mu } D_{\mu \nu } b_0 + 2\, U_{;\mu \mu } D^2 b_0 + U\,D^4 b_0 + 2\, J_\mu D_\mu b_1 + 2\, (G_{\mu \nu })^2 b_1\right\} |_{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{5} \left\{ U_{;\mu \mu \nu \nu } + \frac{2}{3}\,U_{;\mu } J_{\mu } + 2\,U_{;\nu \mu } G_{\mu \nu } + \frac{1}{2} U\,(G_{\mu \nu })^2 + J_\mu U_{;\mu } + 2\, (G_{\mu \nu })^2 U\right\} . \end{aligned}$$
(A.24)
$$\begin{aligned} \left[\!\left[ U^1,U^2 \right]\!\right]{} & {} = \{U+D^2\}b_1|_{z=0} \left[\!\left[ U^1,U^2 \right]\!\right] = U^2 + \frac{1}{3} U_{;\mu \mu }. \end{aligned}$$
(A.25)
$$\begin{aligned} D_\mu b_2|_{z=0} \left[\!\left[ U^1,U^2 \right]\!\right]{} & {} = \frac{1}{3}\left\{ 2\,D_\mu \left( U+D^2\right) b_1-T_\mu b_2\right\} _{z=0} \left[\!\left[ U^1,U^2 \right]\!\right] ,\nonumber \\{} & {} = \frac{2}{3} \left\{ U_{;\mu }b_1 + U\,D_\mu b_1 + D_{\mu \nu \nu } b_1\right\} _{z=0} \left[\!\left[ U^1,U^2 \right]\!\right] ,\nonumber \\{} & {} = \frac{2}{3} \left\{ U_{;\mu } U + \frac{1}{2} U\,U_{;\mu } -\frac{1}{4} U\,J_\mu + \frac{1}{4} U_{;\nu \nu \mu } + \frac{1}{4}U_{;\nu }G_{\mu \nu } - \frac{1}{4}J_\mu U + \frac{1}{4}G_{\mu \nu } U_{;\nu }\right\} . \end{aligned}$$
(A.26)
$$\begin{aligned} D_{\mu \mu } b_2|_{z=0} \left[\!\left[ U^1 \right]\!\right]{} & {} = \frac{1}{4}\left\{ 2\,D_{\mu \mu }\left( U+D^2\right) b_1-T_{\mu \mu } b_2\right\} _{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{2} \left\{ U_{;\mu \mu } b_1 + 2\,U_{;\mu } D_\mu b_1 + U\,D^2 b_1 + D_{\mu \mu \nu \nu } b_1\right\} _{z=0} \left[\!\left[ U^1 \right]\!\right] ,\nonumber \\{} & {} = \frac{1}{2} \left\{ -\frac{1}{5}\,U_{;\mu } J_\mu + \frac{4}{15}U\,(G_{\mu \nu })^2 + \frac{1}{5}U_{;\mu \mu \nu \nu } + \frac{2}{5}\,U_{;\nu \mu } G_{\mu \nu }+ \frac{2}{5}\, (G_{\mu \nu })^2 U\right\} . \end{aligned}$$
(A.27)

Again, we collect all these contributions and with the help of Eq. (A.3), we note the following equation.

$$\begin{aligned}{}[b_4] \left[\!\left[ U^2 \right]\!\right] ={\mathcal {O}}\left( D^4 U^2\right) =&\frac{1}{5} U_{;\mu \mu \nu } U_{;\nu } +\frac{3}{10} U_{;\mu } U_{;\nu \nu \mu } + \frac{1}{5} U_{;\mu \nu \nu } U_{;\mu } + \frac{4}{15} (U_{;\mu \nu })^2 +\frac{1}{3} (U_{;\mu \mu })^2 \\&+\frac{1}{5} U_{;\mu \mu \nu \nu } U +\frac{1}{10} U_{;\mu } U_{;\mu \nu \nu } +\frac{1}{5} U\,U_{;\mu \mu \nu \nu } +\frac{2}{15} J_\mu U_{;\mu U } \\&-\frac{2}{15} U\,U_{;\mu }J_\mu +\frac{1}{5}U\,J_\mu U_{;\mu } - \frac{1}{6} U_{;\mu }U\,J_\mu -\frac{1}{10} U_{;\mu }J_\mu U \\&+ \frac{1}{15} J_\mu U\, U_{;\mu } +\frac{1}{5} U^2 (G_{\mu \nu })^2 +\frac{4}{15} U(G_{\mu \nu })^2U+\frac{2}{15} (U\, G_{\mu \nu })^2 \\&+\frac{1}{15} G_{\mu \nu } U^2 G_{\mu \nu } +\frac{2}{15} (G_{\mu \nu } U)^2 + \frac{1}{5} U_{;\mu } U_{;\nu } G_{\mu \nu } + \frac{1}{5} U_{;\mu } G_{\mu \nu } U_{;\nu }\\ {}&+\frac{1}{5} (G_{\mu \nu })^2 U^2. \qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\end{aligned}$$
(A.28)

\(\underline{{\mathcal {O}}\left( D^4 U^3\right) }\)

We repeat the same task, one more time. We focus on the computation of the relevant derivatives of HKCs to calculate the operators \({\mathcal {O}}\left( D^4 U^3\right)\).

$$\begin{aligned} D_{\mu \mu } b_2|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{4} \left\{ 2\,D^2\left( U+D^2\right) b_1 - T_{\mu \mu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{2} \left\{ U_{;\mu \mu } b_1 + 2\,U_{;\mu } D_\mu b_1 + U\,D^2 b_1\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{2} \left\{ U_{;\mu \mu } U + U_{;\mu } U_{;\mu } + \frac{1}{3}U\,U_{;\mu \mu }\right\} . \end{aligned}$$
(A.29)
$$\begin{aligned} D_{\mu \nu } b_2|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{4} \left\{ 2\,D_{\mu \nu }\left( U+D^2\right) b_1 - T_{\mu \nu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{4} \left\{ 2\,U_{;\nu \mu } b_1 + 2\,U_{;\mu } D_\nu b_1 + 2\,U_{;\nu } D_\mu b_1 +2\, U\,D_{\mu \nu } b_1 - G_{\nu \mu }b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{4} \left\{ 2\,U_{;\nu \mu } U + U_{;\mu } U_{;\nu } + U_{;\nu } U_{;\mu } + \frac{2}{3} U\,U_{;\nu \mu } + \frac{1}{3} U^2\,G_{\mu \nu }+ \frac{2}{3} U\,G_{\mu \nu }U + G_{\mu \nu }U^2\right\} . \end{aligned}$$
(A.30)
$$\begin{aligned} D_{\mu \nu \nu } b_2|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{5} \left\{ 2\,D_{\mu \nu \nu }\left( U+D^2\right) b_1 - T_{\mu \nu \nu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ D_{\mu }\left( U_{;\nu \nu } b_1 + 2\,U_{;\nu }D_\nu b_1 + U\,D^2 b_1\right) - \frac{1}{2}D_\nu G_{\nu \mu } b_2\right. \\&\left. \quad - \frac{1}{2} G_{\nu \mu } D_\nu b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ U_{;\nu \nu \mu } b_1 + U_{;\nu \nu } D_\mu b_1 + 2\,U_{;\nu \mu }D_\nu b_1 + 2\,U_{;\nu }D_{\mu \nu } b_1 + U_{;\mu }\,D^2 b_1 \right. \\&\left. \quad + U\,D_{\mu \nu \nu } b_1 - \frac{1}{2} G_{\nu \mu ;\nu } b_2 - G_{\nu \mu }D_\nu b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ U_{;\nu \nu \mu } U + \frac{1}{2} U_{;\nu \nu } U_{;\mu } + U_{;\nu \mu }U_{;\nu } + \frac{2}{3}\,U_{;\nu }U_{;\nu \mu } + \frac{1}{3}\,U_{;\nu }U\,G_{\mu \nu }\right. \\&\quad + \frac{2}{3}\,U_{;\nu }G_{\mu \nu }U + \frac{1}{3}U_{;\mu }U_{;\nu \nu } + \frac{1}{4}U\,U_{;\nu \nu \mu } + \frac{1}{4}U\,U_{;\nu }G_{\mu \nu } - \frac{1}{12}U^2\,J_{\mu }\\&\left. \quad - \frac{1}{4}U\,J_{\mu }U + \frac{1}{4}U\,G_{\mu \nu }U_{;\nu } -\frac{1}{2} J_\mu U^2 + \frac{2}{3} G_{\mu \nu }U_{;\nu }U + \frac{1}{3} G_{\mu \nu }U\,U_{;\nu } \right\} . \end{aligned}$$
(A.31)
$$\begin{aligned} D_{\nu \nu \mu } b_2|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{5} \left\{ 2\,D_{\nu \nu \mu }\left( U+D^2\right) b_1 - T_{\nu \nu \mu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ D_{\nu \nu }(U_{\mu }b_1 + U\,D_\mu b_1) - D_\nu G_{\mu \nu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ U_{;\mu \nu \nu }b_1 + U_{\mu } D^2 b_1 + 2\,U_{\mu \nu } D_\nu b_1 + U_{\nu \nu }\,D_\mu b_1\right. \\&\left. \quad + U\,D_{\nu \nu \mu } b_1 +2\, U_{;\nu }\,D_{\nu \mu } b_1 + G_{\nu \mu ;\nu } b_2 + G_{\nu \mu } D_\nu b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{2}{5} \left\{ U_{;\mu \nu \nu } U + \frac{1}{3}U_{\mu } U_{;\nu \nu } + U_{\mu \nu } U_{;\nu } + \frac{1}{2}U_{\nu \nu } U_{;\mu }+ \frac{1}{4}U\,U_{;\mu \nu \nu } + J_\mu U^2\right. \\&\quad +\frac{1}{4} U\,U_{;\nu }G_{\nu \mu } + \frac{1}{6} U^2 J_\mu + \frac{1}{2}U\,J_\mu U +\frac{1}{4} U\,G_{\nu \mu }U_{;\nu } +\frac{2}{3}\, U_{;\nu }\,U_{;\mu \nu }\\&\left. \quad +\frac{1}{3}\, U_{;\nu }U\,G_{\nu \mu } +\frac{2}{3}\, U_{;\nu }G_{\nu \mu }U + \frac{2}{3} G_{\nu \mu } U_{;\nu }U + \frac{1}{3} G_{\nu \mu }U\, U_{;\nu }\right\} . \end{aligned}$$
(A.32)
$$\begin{aligned} D^4\,b_2|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{6} \left\{ 2\,D_{\mu \mu \nu \nu }\left( U+D^2\right) b_1 - T_{\mu \mu \nu \nu } b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{3} \left\{ U_{;\mu \mu \nu \nu } b_1 + 2\, U_{;\mu \nu \nu } D_\mu b_1 + 2\, U_{;\nu \nu \mu } D_\mu b_1 + 2\,U_{;\mu } D_{\mu \nu \nu } b_1 + 2\,U_{;\mu } D_{\nu \nu \mu } b_1\right. \\&\left. \quad + 4\,U_{;\nu \mu } D_{\mu \nu } b_1 + 2\, U_{;\mu \mu } D^2 b_1 + U\,D^4 b_1 + J_\mu D_\mu b_2 + (G_{\mu \nu })^2 b_2\right\} |_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{3} \left\{ U_{;\mu \mu \nu \nu } U + \frac{1}{5} U\,U_{;\mu \mu \nu \nu } + \frac{2}{3}\,U_{;\mu \mu }U_{;\nu \nu } + U_{;\nu \nu \mu } U_{;\mu } + U_{;\mu \nu \nu } U_{;\mu } \right. \\&\quad + \frac{2}{5} U\,U_{;\mu }J_\mu -\frac{4}{15}U\,(G_{\mu \nu })^2 U + (G_{\mu \nu })^2 U^2 +\frac{1}{5}U\,J_\mu U_{;\mu } - \frac{2}{15}(U\,G_{\mu \nu })^2 \\&\quad - \frac{1}{10}U^2 (G_{\mu \nu })^2 + \frac{1}{2} U_{;\mu } U_{;\nu \nu \mu } +\frac{1}{2} U_{;\mu }J_\mu U +\frac{1}{6} U_{;\mu }U\,J_\mu + \frac{1}{2}U_{;\mu }U_{;\mu \nu \nu }\\&\left. \quad +\frac{4}{3}(U_{;\mu \nu })^2 +\frac{1}{3}G_{\mu \nu }U^2\,G_{\mu \nu } + \frac{2}{3}(G_{;\mu \nu }U)^2 +\frac{2}{3} J_\mu U_{;\mu } U +\frac{1}{3} J_\mu U U_{;\mu } \right\} . \end{aligned}$$
(A.33)
$$\begin{aligned}{}[b_3] \left[\!\left[ U^2,U^3 \right]\!\right]&= \left\{ U+D^2\right\} b_2|_{z=0} \left[\!\left[ U^2,U^3 \right]\!\right] ,\\&= U^3 + \frac{1}{2} U\,U_{;\mu \mu } + \frac{1}{2} U_{;\mu \mu } U + \frac{1}{2} (U_{;\mu })^2.\\ \end{aligned}$$
(A.34)
$$\begin{aligned} D_\mu b_3|_{z=0} \left[\!\left[ U^2,U^3 \right]\!\right]&= \frac{1}{4}\left\{ 3\,D_\mu \left( U+D^2\right) b_2-T_\mu b_3\right\} _{z=0} \left[\!\left[ U^2,U^3 \right]\!\right] ,\\&= \frac{3}{4} \left\{ U_{;\mu }b_2 + U\,D_\mu b_2 + D_{\mu \nu \nu } b_2\right\} _{z=0} \left[\!\left[ U^2,U^3 \right]\!\right] ,\\&= \frac{3}{4} \left\{ U_{;\mu } U^2 + \frac{2}{3} U\,U_{;\mu }U + \frac{1}{3} U^2U_{;\mu } -\frac{1}{5} U^2J_\mu - \frac{4}{15} UJ_\mu U\right. \\&\quad + \frac{4}{15} U\,U_{;\nu \nu \mu } + \frac{4}{15}U\,U_{;\nu }G_{\mu \nu } + \frac{4}{15} U\,G_{\mu \nu } U_{;\nu } + \frac{7}{15} U_{;\mu } U_{;\nu \nu }\\&\quad + \frac{2}{5} U_{;\nu \nu \mu } U + \frac{1}{5} U_{;\nu \nu } U_{;\mu } + \frac{2}{5} U_{;\nu \mu }U_{;\nu } + \frac{4}{15}\,U_{;\nu }U_{;\nu \mu } -\frac{1}{5} J_\mu U^2\\&\left. \quad + \frac{2}{15}\,U_{;\nu }U\,G_{\mu \nu } + \frac{4}{15}\,U_{;\nu }G_{\mu \nu }U + \frac{4}{15} G_{\mu \nu }U_{;\nu }U + \frac{2}{15} G_{\mu \nu }U\,U_{;\nu } \right\} . \end{aligned}$$
(A.35)
$$\begin{aligned} D_{\mu \mu } b_3|_{z=0} \left[\!\left[ U^2 \right]\!\right]&= \frac{1}{5}\left\{ 3\,D_{\mu \mu }\left( U+D^2\right) b_2 -T_{\mu \mu } b_3\right\} _{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{3}{5} \{U_{;\mu \mu } b_2 + 2\,U_{;\mu } D_\mu b_2 + U\,D^2 b_2 + D_{\mu \mu \nu \nu } b_2\}_{z=0} \left[\!\left[ U^2 \right]\!\right] ,\\&= \frac{1}{5} \left\{ \frac{1}{10}\,U\,U_{;\mu } J_\mu + \frac{1}{2}U\,U_{;\mu \mu \nu \nu } + \frac{1}{6}\,(U\,G_{\mu \nu })^2 +\frac{1}{3}G_{\mu \nu }U^2\,G_{\mu \nu }\right. \\&\quad + \frac{1}{2}U\,J_\mu U_{;\mu } + \frac{3}{2}U_{;\mu }U_{;\nu \nu \mu } + U_{;\mu }G_{\mu \nu } U_{;\nu } + U_{;\mu } U_{;\nu } G_{\mu \nu } +\frac{4}{3}(U_{;\mu \nu })^2 \\&\quad + U_{;\mu \mu \nu \nu } U + \frac{2}{3}\,U_{;\mu \mu }U_{;\nu \nu } + U_{;\nu \nu \mu } U_{;\mu } + U_{;\mu \nu \nu } U_{;\mu } + \frac{1}{3}\, U(G_{\mu \nu })^2 U \\&\quad + (G_{\mu \nu })^2 U^2 -\frac{1}{2} U_{;\mu }J_\mu U -\frac{5}{6} U_{;\mu }U\,J_\mu + \frac{1}{2}U_{;\mu }U_{;\mu \nu \nu } +\frac{1}{3} J_\mu U U_\mu \\&\left. \quad + (U_{;\mu \mu })^2 + \frac{2}{3}(G_{;\mu \nu }U)^2 +\frac{2}{3} J_\mu U_\mu U \right\} . \end{aligned}$$
(A.36)

Finally, we combine all the above-computed expressions and put them in Eq. (A.4) to find the operators of the class \({\mathcal {O}}\left( D^4 U^3\right)\). Note that, at this stage, all the evaluated operator structures are not independent. We employ the trace properties and a few identitiesFootnote 6 that simplify the HKCs and allow us to write them in terms of independent operators. Finally, we find the independent operators of the form \({\mathcal {O}}\left( D^4 U^3\right)\) as

$$\begin{aligned} \begin{aligned}{}[b_5] \left[\!\left[ U^3 \right]\!\right] = {\mathcal {O}}\left( D^4 U^3\right) =&\ U^3 (G_{\mu \nu })^2 + \frac{2}{3} U^2 G_{\mu \nu } U\,G_{\mu \nu } + \frac{1}{3} U^2 J_\mu U_{;\mu } + \frac{1}{3} U\,G_{\mu \nu }U_{;\mu }U_{;\nu } \\&+ \frac{1}{3} U\,U_{;\mu }U_{;\nu }\,G_{\mu \nu } - \frac{1}{3} U^2 U_{;\mu }J_\mu + U\,U_{;\mu \mu }U_{;\nu \nu } + \frac{2}{3} U_{;\mu \mu } (U_{;\nu })^2. \end{aligned} \end{aligned}$$
(A.37)

Appendix B: Review of covariant diagram method

In this section, we present a brief review of the development of the covariant diagram representation starting from the original gauge-covariant functional form of the effective action. The topic has been greatly discussed in Refs. [72, 73]. As shown in Eq. (1.1), the one-loop part of the effective action for a field can be given as follows:

$$\begin{aligned} \Delta S_{\text {eff}} = ic_s\, \text {Tr} \log \left( -P^2+M^2+U\right) . \end{aligned}$$
(B.1)

here, \(c_s = +1/2\), or \(+1\) depending on whether the heavy field is a real scalar or complex scalar. The trace “Tr” can then be evaluated by taking an integral over the momentum eigenstate basis,

$$\begin{aligned} \int d^dx\,{\mathcal {L}}_{\text {eff}}[\phi ] & = ic_s\,\int \,\frac{d^d q}{(2\pi )^d}\langle {q}\vert \text {tr} \log \left( -{\widehat{P}}^2+M^2+U\right) \vert {q} \rangle \nonumber \\&= ic_s\int d^dx\int \frac{d^d q}{(2\pi )^d}{\langle q\vert x\rangle }\langle {x}\vert \text {tr} \log \left( -{\widehat{P}}^2+M^2+U\right) \vert {q} \rangle \nonumber \\&= ic_s\int d^dx\int \frac{d^d q}{(2\pi )^d}\,e^{i\,q.x}\,\text {tr} \log \left( -P^2+M^2+U\right) \,e^{-i\,q.x}. \end{aligned}$$
(B.2)

By following a straightforward manipulation of introducing the completeness relation for the basis of the spatial eigenstates, we find the following form of the effective one-loop Lagrangian,

$$\begin{aligned} {\mathcal {L}}_{\text {eff}}[\phi ]{} & {} = ic_s\int \frac{d^d q}{(2\pi )^d}\,\text {tr} \log \left( -P^2+M^2+U\right) _{P\rightarrow P-q}\nonumber \\{} & {} = ic_s\int \frac{d^d q}{(2\pi )^d}\text {tr} \log \left( -P^2-q^2+2q.P+M^2+U\right) \nonumber \\{} & {} = ic_s\int \frac{d^d q}{(2\pi )^d}\text {tr} \bigg \{\log \left( -q^2+M^2\right) +\log \big [1-\left( q^2-M^2\right) ^{-1}\left( -P^2+2q.P+U\right) \big ]\bigg \}. \end{aligned}$$
(B.3)

After performing the momentum integral, the first term in Eq. (B.3) reduces to a constant, while the second term can be expanded in an infinite series as shown in Eq. (6.1).

1.1 B.1 Covariant loop diagrams, their structures and values

In this subsection, we present all the diagrams that can contribute to dimension eight interactions at each order of \(P^{2n}U^{m}\) with possible contractions among \(P_{\mu }\)’s and note down the corresponding operator structures containing open covariant derivatives (\(P_{\mu }\)’s) and value for the loops.

1.1.1 \(\mathbf {O\left( P^4\,U^3\right) }\)

See Table 2.

Table 2 All possible diagrams at the level of \(O\left( P^4U^3\right)\). In the second column, we present their corresponding operator structures with open covariant derivatives. Their values are given in the third column

1.1.2 \(\mathbf {O(P^8)}\)

See Table 3.

Table 3 All possible diagrams at the level of \(O(P^8)\) containing eight \(P_{\mu }\)’s that are contracted among themselves. In the second column, we present their corresponding operator structures with open covariant derivatives. Their values are given in the third column

1.1.3 \(\mathbf {O\left( P^6\,U^2\right) }\)

See Table 4.

Table 4 All possible diagrams at the level of \(O(P^6U^2)\) containing six \(P_{\mu }\)’s that are contracted among themselves and two U’s. In the second column, we present their corresponding operator structures with open covariant derivatives. Their values are given in the third column

1.1.4 \(\mathbf {O(P^6\,U)}\)

See Table 5.

Table 5 All possible diagrams at the level of \(O(P^6U)\). In the second column, we present their corresponding operator structures with open covariant derivatives. Their values are given in the third column

1.2 B.2 Master integrals for heavy loops

Each of the covariant diagrams mentioned in Sect. 6 corresponds to a loop integral with n heavy propagators and \(2n_c\) contractions which can be generalised in the following form

$$\begin{aligned} \int \frac{d^d q}{(2\pi )^d}\,\frac{q^{\mu _1}\cdots q^{\mu _{2n_c}}}{(q^2-M^2)^{n}}\,\equiv \,g^{\mu _1\cdots \mu _{2n_c}} \,{\mathcal {I}}[q^{2n_c}]^{n}, \end{aligned}$$
(B.4)

We have used Package-X [109, 110] to compute the loop integrals. In Table 6, we have listed the results for the loop integrals discussed in Sect. 6.

Table 6 The values corresponding to the master integrals associated with the covariant diagrams

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, U., Chakrabortty, J., Rahaman, S.U. et al. One-loop effective action up to dimension eight: integrating out heavy scalar(s). Eur. Phys. J. Plus 139, 159 (2024). https://doi.org/10.1140/epjp/s13360-024-04890-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04890-0

Navigation