Skip to main content
Log in

Superconducting gap structure of slightly overdoped NaFe\(_{0.955}\)Co\(_{0.045}\)As pnictides: joint SnS-Andreev spectroscopy and specific heat study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We present a study of the superconducting order parameter in slightly overdoped alkali-metal-based pnictides NaFe\(_{0.955}\)Co\(_{0.045}\)As with \(T_c \approx 21\) K using a combination of incoherent multiple Andreev reflection effect (IMARE) spectroscopy of planar SnS-junctions and specific heat measurements. We observe a multiple-gap superconductivity, directly and locally determine the magnitudes \(\Delta _i(0)\), characteristic ratios \(2\Delta _i(0)/k_BT_c\), and temperature dependences \(\Delta _i(T)\) of the superconducting order parameters. Possible momentum dependence of the revealed gaps is discussed. We show that a usage of the characteristic ratios obtained in the IMARE experiment provides a qualitative fit of the extracted temperature dependence of the electronic specific heat \(C_{el}(T)/T\) within the two-band approach using only two free parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data are available on request.]

References

  1. X.C. Wang, Q.Q. Liu, Y.X. Lv, W.B. Gao, L.X. Yang, R.C. Yu, F.Y. Li, C.Q. Jin, The superconductivity at 18 K in LiFeAs system. Solid State Comm. 148, 538 (2008)

    Article  ADS  Google Scholar 

  2. J.H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P.C.W. Chu, A.M. Guloy, LiFeAs: An intrinsic FeAs-based superconductor with \(T_c = 18\) K. Phys. Rev. B 78, 060505(R) (2008)

    Article  ADS  Google Scholar 

  3. D.R. Parker, M.J. Pitcher, P.J. Baker, I. Franke, T. Lancaster, S.J. Blundell, S.J. Clarke, Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem Comm. 2009, 2189 (2009)

    Article  Google Scholar 

  4. T.E. Kuzmicheva, S.A. Kuzmichev, Electron and superconducting properties of the AFeAs (A= Li, Na) family alkali-metal pnictides: current stage of the research (mini-review). JETP Lett. 114, 630 (2021)

    Article  ADS  Google Scholar 

  5. S.V. Borisenko, V.B. Zabolotnyy, D.V. Evtushinsky, T.K. Kim, I.V. Morozov, A.N. Yaresko, A.A. Kordyuk, G. Behr, A. Vasiliev, R. Follath, B. Büchner, Superconductivity without magnetism in LiFeAs. Phys. Rev. Lett. 105, 067002 (2010)

    Article  ADS  Google Scholar 

  6. Y.M. Dai, H. Miao, L.Y. Xing, X.C. Wang, P.S. Wang, H. Xiao, T. Qian, P. Richard, X.G. Qiu, W. Yu, C.Q. Jin, Z. Wang, P.D. Johnson, C.C. Homes, H. Ding, Spin-Fluctuation-Induced non-fermi-liquid behavior with suppressed superconductivity in LiFe\(_{1-x}\)Co\(_x\)As. Phys. Rev. X 5, 031035 (2015)

    Google Scholar 

  7. Z.R. Ye, Y. Zhang, F. Chen, M. Xu, J. Jiang, X.H. Niu, C.H.P. Wen, L.Y. Xing, X.C. Wang, C.Q. Jin, B.P. Xie, D.L. Feng, Extraordinary Doping Effects on Quasiparticle Scattering and Bandwidth in Iron-Based Superconductors. Phys. Rev. X 4, 031041 (2014)

    Google Scholar 

  8. A.F. Wang, X.G. Luo, Y.J. Yan, J.J. Ying, Z.J. Xiang, G.J. Ye, P. Cheng, Z.Y. Li, W.J. Hu, X.H. Chen, Phase diagram and calorimetric properties of NaFe\(_{1-x}\)Co\(_x\)As. Phys. Rev. B 85, 224521 (2012)

    Article  ADS  Google Scholar 

  9. J.D. Wright, T. Lancaster, I. Franke, A.J. Steele, J.S. Möller, M.J. Pitcher, A.J. Corkett, D.R. Parker, D.G. Free, F.L. Pratt, P.J. Baker, S.J. Clarke, S.J. Blundell, Gradual destruction of magnetism in the superconducting family NaFe\(_{1-x}\)Co\(_x\)As. Phys. Rev. B 85, 054503 (2012)

    Article  ADS  Google Scholar 

  10. F. Steckel, M. Roslova, R. Beck, I. Morozov, S. Aswartham, D. Evtushinsky, C.G.M. Blum, M. Abdel-Hafiez, D. Bombor, J. Maletz, S. Borisenko, A.V. Shevelkov, A.U.B. Wolter, C. Hess, S. Wurmehl, B. Büchner, Crystal growth and electronic phase diagram of 4d-doped Na\(_{1-\delta }\)Fe\(_{1-x}\)Rh\(_x\)As in comparison to 3d-doped Na\(_{1-\delta }\)Fe\(_{1-x}\)Co\(_x\)As. Phys. Rev. B 91, 184516 (2015)

    Article  ADS  Google Scholar 

  11. D.R. Parker, M.J.P. Smith, T. Lancaster, A.J. Steele, I. Franke, P.J. Baker, F.L. Pratt, M.J. Pitcher, S.J. Blundell, S.J. Clarke, Control of the competition between a magnetic phase and a superconducting phase in cobalt-doped and Nickel-Doped NaFeAs using electron count. Phys. Rev. Lett. 104, 057007 (2010)

    Article  ADS  Google Scholar 

  12. I.A. Nekrasov, N.S. Pavlov, M.V. Sadovskii, Electronic structure of NaFeAs superconductor: LDA + DMFT calculations compared with ARPES experiment. J. Supercond. Novel Magn. 29, 1117 (2016)

    Article  Google Scholar 

  13. M.D. Watson, S. Aswartham, L.C. Rhodes, B. Parrett, H. Iwasawa, M. Hoesch, I. Morozov, B. Büchner, T.K. Kim, Three-dimensional electronic structure of the nematic and antiferromagnetic phases of NaFeAs from detwinned angle-resolved photoemission spectroscopy. Phys. Rev. B 97, 035134 (2018)

    Article  ADS  Google Scholar 

  14. Z.-H. Liu, P. Richard, K. Nakayama, G.-F. Chen, S. Dong, J.-B. He, D.-M. Wang, T.-L. Xia, K. Umezawa, T. Kawahara, S. Souma, T. Sato, T. Takahashi, T. Qian, Y. Huang, N. Xu, Y. Shi, H. Ding, S.-C. Wang, Unconventional superconducting gap in NaFe\(_{0.95}\)Co\(_{0.05}\)As observed by angle-resolved photoemission spectroscopy. Phys. Rev. B 84, 064519 (2011)

    Article  ADS  Google Scholar 

  15. I.I. Mazin, T.P. Devereaux, J.G. Analytis, J.H. Chu, I.R. Fisher, B. Muschler, R. Hack, Pinpointing gap minima in Ba(Fe\(_{0.94}\)Co\(_{0.06}\))\(_2\)As\(_2\) via band-structure calculations and electronic Raman scattering. Phys. Rev. B 82, 180502(R) (2010)

    Article  ADS  Google Scholar 

  16. M.M. Korshunov, Superconducting state in Fe-based materials and spin-fluctuation theory of pairing. Phys. Usp. 57, 813 (2014)

    Article  ADS  Google Scholar 

  17. P.J. Hirschfeld, Using gap symmetry and structure to reveal the pairing mechanism in Fe-based superconductors. C. R. Physique 17, 197 (2016)

    Article  ADS  Google Scholar 

  18. H. Kontani, S. Onari, Orbital-Fluctuation-Mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard–Holstein model. Phys. Rev. Lett. 86, 157001 (2020)

    Google Scholar 

  19. S. Onari, H. Kontani, Hidden antiferronematic order in Fe-based superconductor BaFe\(_2\)As\(_2\) and NaFeAs above \(T_S\). Phys. Rev. Res. 2, 042005(R) (2020)

    Article  Google Scholar 

  20. R. Yu, J.-X. Zhu, Q. Si, Orbital-selective superconductivity, gap anisotropy, and spin resonance excitations in a multiorbital \(t-J_1-J_2\) model for iron pnictides. Phys. Rev. B 89, 024509 (2014)

    Article  ADS  Google Scholar 

  21. T. Saito, S. Onari, H. Kontani, Nodal gap structure in Fe-based superconductors due to the competition between orbital and spin fluctuations. Phys. Rev. B 88, 045115 (2013)

    Article  ADS  Google Scholar 

  22. Y. Zhang, Z.R. Ye, Q.Q. Ge, F. Chen, J. Jiang, M. Xu, B.P. Xie, D.L. Feng, Nodal superconducting-gap structure in ferropnictide superconductor BaFe\(_2\)(As\(_{0.7}\)P\(_{0.3}\))\(_2\). Nat. Phys. 8, 371 (2012)

    Article  Google Scholar 

  23. M. Yamashita, Y. Senshu, T. Shibauchi, S. Kasahara, K. Hashimoto, D. Watanabe, H. Ikeda, T. Terashima, I. Vekhter, A.B. Vorontsov, Y. Matsuda, Nodal gap structure of superconducting BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\) from angle-resolved thermal conductivity in a magnetic field. Phys. Rev. B 84, 060507(R) (2011)

    Article  ADS  Google Scholar 

  24. T. Yoshida, S. Ideta, T. Shimojima, W. Malaeb, K. Shinada, H. Suzuki, I. Nishi, A. Fujimori, K. Ishizaka, S. Shin, Y. Nakashima, H. Anzai, M. Arita, A. Ino, H. Namatame, M. Taniguchi, H. Kumigashira, K. Ono, S. Kasahara, T. Shibauchi, T. Terashima, Y. Matsuda, M. Nakajima, S. Uchida, Y. Tomioka, T. Ito, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, H. Ikeda, R. Arita, T. Saito, S. Onari, H. Kontani, Anisotropy of the superconducting gap in the iron-based superconductor BaFe\(_2\)(As\(_{1-x}\)P\(_x\))\(_2\). Sci. Rep. 4, 7292 (2014)

    Article  Google Scholar 

  25. Q.Q. Ge, Z.R. Ye, M. Xu, Y. Zhang, J. Jiang, B.P. Xie, Y. Song, C.L. Zhang, P. Dai, D.L. Feng, Anisotropic but nodeless superconducting gap in the presence of spin-density wave in iron-pnictide superconductor NaFe\(_{1-x}\)Co\(_x\)As. Phys. Rev. X 3, 011020 (2013)

    Google Scholar 

  26. K. Cho, M.A. Tanatar, N. Spyrison, H. Kim, Y. Song, P. Dai, C.L. Zhang, R. Prozorov, Doping-dependent anisotropic superconducting gap in Na\(_{1-\delta }\)(Fe\(_{1-x}\)Co\(_x\))As from London penetration depth. Phys. Rev. B 86, 020508(R) (2012)

    Article  ADS  Google Scholar 

  27. H. Yang, Z. Wang, D. Fang, S. Li, T. Kariyado, G. Chen, M. Ogata, T. Das, A.V. Balatsky, H.-H. Wen, Unexpected weak spatial variation in the local density of states induced by individual Co impurity atoms in superconducting Na(Fe\(_{1-x}\)Co\(_x\))As crystals revealed by scanning tunneling spectroscopy. Phys. Rev. B 86, 214512 (2012)

    Article  ADS  Google Scholar 

  28. S.Y. Zhou, X.C. Hong, X. Qiu, B.Y. Pan, Z. Zhang, X.L. Li, W.N. Dong, A.F. Wang, X.G. Luo, X.H. Chen, S.Y. Li, Evidence for nodeless superconducting gap in NaFe\(_{1-x}\)Co\(_x\)As from low-temperature thermal conductivity measurements. Europhys. Lett. 101, 17007 (2013)

    Article  ADS  Google Scholar 

  29. G. Tan, P. Zheng, X. Wang, Y. Chen, X. Zhang, J. Luo, T. Netherton, Y. Song, P. Dai, C. Zhang, S. Li, Strong-coupling superconductivity in NaFe\(_{1-x}\)Co\(_x\)As: validity of Eliashberg theory. Phys. Rev. B 87, 144512 (2013)

    Article  ADS  Google Scholar 

  30. J. Moreland, J.W. Ekin, Electron tunneling experiments using NbSn “break’’ junctions. J. Appl. Phys. 58, 3888 (1958)

    Article  ADS  Google Scholar 

  31. S.A. Kuzmichev, T.E. Kuzmicheva, “Break-junction’’ technique in application to layered superconductors (Review article). Low Temp. Phys. 42, 1008 (2016)

    Article  ADS  Google Scholar 

  32. M. Octavio, M. Tinkham, G.E. Blonder, T.M. Klapwijk, Subharmonic energy-gap structure in superconducting constrictions. Phys. Rev. B 27, 6739 (1983)

    Article  ADS  Google Scholar 

  33. R. Kümmel, U. Gunsenheimer, R. Nicolsky, Andreev scattering of quasiparticle wave packets and current-voltage characteristics of superconducting metallic weak links. Phys. Rev. B 42, 3992 (1990)

    Article  ADS  Google Scholar 

  34. U. Gunsenheimer, A.D. Zaikin, Ballistic charge transport in superconducting weak links. Phys. Rev. B 50, 6317 (1994)

    Article  ADS  Google Scholar 

  35. U. Gunsenheimer, A.D. Zaikin, Ballistic charge transport in superconducting weak links in microwave fields. Europhys. Lett. 41, 195 (1998)

    Article  ADS  Google Scholar 

  36. Z. Popovic, P. Miranovic, Current-voltage characteristics and conductance spectra in \(s\)-wave or \(d\)-wave superconductor/ferromagnet/superconductor heterojunctions: role of Andreev reflection. Eur. Phys. J. Plus 138, 767 (2023)

    Article  Google Scholar 

  37. D. Averin, A. Bardas, ac Josephson effect in a single quantum channel. Phys. Rev. Lett. 75, 1831 (1995)

    Article  ADS  Google Scholar 

  38. G.B. Arnold, Superconducting tunneling without the tunneling Hamiltonian. II. Subgap harmonic structure. J. Low. Temp. Phys. 68, 1 (1987)

    Article  ADS  Google Scholar 

  39. T.P. Devereaux, P. Fulde, Multiple Andreev scattering in superconductor-normal metal-superconductor junctions as a test for anisotropic electron pairing, m Phys. Rev. B 47, 14638 (1993)

    Article  Google Scholar 

  40. L. Morgun, S. Kuzmichev, I. Morozov, A. Degtyarenko, A. Sadakov, A. Shilov, I. Zhuvagin, Y. Rakhmanov, T. Kuzmicheva, Upper critical field and tunneling spectroscopy of underdoped Na(Fe, Co)As single crystals. Materials 16, 6421 (2023)

    Article  ADS  Google Scholar 

  41. G. Tan, P. Zheng, X. Wang, Y. Chen, X. Zhang, J. Luo, T. Netherton, Y. Song, P. Dai, C. Zhang, L. Sh, Strong-coupling superconductivity in NaFe\({}_{1-x}\)Co\({}_{x}\)As: Validity of Eliashberg theory. Phys. Rev. B 87, 144512 (2013)

    Article  ADS  Google Scholar 

  42. J.W. Stout, E. Catalano, Heat capacity of zinc fluoride from 11 to 300\(^{\circ }\)K. Thermodynamic functions of zinc fluoride entropy and heat capacity associated with the antiferromagnetic ordering of manganous fluoride, ferrous fluoride, cobaltous fluoride, and nickelous fluoride. J. Chem. Phys. 23, 2013 (1955)

    Article  ADS  Google Scholar 

  43. P. Popovich, A.V. Boris, O.V. Dolgov, A.A. Golubov, D.L. Sun, C.T. Lin, R.K. Kremer, B. Keimer, Specific heat measurements of \({\rm Ba\rm _{0.68}{\bf K\rm }_{0.32}{\rm Fe}}_{2}{\rm As}_{2}\) single crystals: evidence for a multiband strong-coupling superconducting state. Phys. Rev. Lett. 105, 027003 (2010)

  44. P.J. Baker, S.R. Giblin, F.L. Pratt, R.H. Liu, G. Wu, X.H. Chen, M.J. Pitcher, D.R. Parker, S.J. Clarke, S.J. Blundell, Heat capacity measurements on FeAs-based compounds: a thermodynamic probe of electronic and magnetic states. New J. Phys. 11, 025010 (2009)

    Article  ADS  Google Scholar 

  45. V.A. Moskalenko, Superconductivity of metals considering the overlapping of energy bands. Phys. Met. Metallogr. 8, 25 (1959)

    Google Scholar 

  46. V.A. Moskalenko, Temperature and purity dependence of the superconducting critical field, \(H_{c2}\). The theory of superconductors with overlapping energy bands. Sov. Phys. Usp. 17, 450 (1974)

    Article  ADS  Google Scholar 

  47. H. Suhl, B.T. Matthias, L.R. Walker, Bardeen-cooper-schrieffer theory of superconductivity in the case of overlapping bands. Phys. Rev. Lett. 3, 552 (1959)

    Article  ADS  Google Scholar 

  48. H. Padamsee, J.E. Neighbor, C.A. Shiffman, Quasiparticle phenomenology for thermodynamics of strong-coupling superconductors. J. Low Temp. Phys. 12, 387 (1973)

    Article  ADS  Google Scholar 

  49. F. Bouquet, Y. Wang, R.A. Fisher, D.G. Hinks, J.D. Jorgensen, A. Junod, N.E. Phillips, Phenomenological two-gap model for the specific heat of MgB\(_2\). EPL 56, 856 (2001)

    Article  ADS  Google Scholar 

  50. F. Hardy, T. Wolf, R.A. Fisher, R. Eder, P. Schweiss, P. Adelmann, V.H. Löhneysen, C. Meingast, Calorimetric evidence of multiband superconductivity in \(\text{ Ba }{({\text{ Fe }}_{0.925}{\text{ Co }}_{0.075})}_{2}{\text{ As }}_{2}\) single crystals. Phys. Rev. B 81, 060501 (2010)

    Article  ADS  Google Scholar 

  51. Y.S. Kushnirenko, D.V. Evtushinsky, T.K. Kim, I. Morozov, L. Harnagea, S. Wurmehl, S. Aswartham, B. Büchner, A.V. Chubukov, S.V. Borisenko, Nematic superconductivity in LiFeAs. Phys. Rev. Lett. 102, 184502 (2020)

    ADS  Google Scholar 

  52. S.A. Kuzmichev, T.E. Kuzmicheva, I.V. Morozov, S. Wurmehl, B. Büchner, Experimental evidence of three-gap superconductivity in LiFeAs. JETP Lett. 111, 350 (2020)

    Article  ADS  Google Scholar 

  53. T.E. Kuzmicheva, S.A. Kuzmichev, K.S. Pervakov, V.A. Vlasenko, Superconducting order parameters in overdoped BaFe\(_{1.86}\)Ni\(_{0.14}\)As\(_2\) revealed by multiple Andreev reflection spectroscopy of planar break junctions. Phys. Rev. B 104, 174512 (2021)

    Article  ADS  Google Scholar 

  54. S.A. Kuzmichev, K.S. Pervakov, V.A. Vlasenko, A.Y. Degtyarenko, S.Y. Gavrilkin, T.E. Kuzmicheva, Andreev spectroscopy of EuCsFe\(_4\)As\(_4\) stoichiometric superconducting pnictide. JETP Lett. 116, 723 (2022)

    Article  ADS  Google Scholar 

  55. S.A. Kuzmichev, I.V. Morozov, A.I. Shilov, E.O. Rakhmanov, T.E. Kuzmicheva, Multiple Andreev reflection effect spectroscopy of underdoped NaFe\(_{1-x}\)Co\(_x\)As single crystals. JETP Lett. 117, 612 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research has been partly done using the research equipment of the Shared facility center at Lebedev Physical Institute RAS.

Funding

The work is supported by Russian Science Foundation grant number 22-72-10082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana Kuzmicheva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmichev, S., Muratov, A., Gavrilkin, S. et al. Superconducting gap structure of slightly overdoped NaFe\(_{0.955}\)Co\(_{0.045}\)As pnictides: joint SnS-Andreev spectroscopy and specific heat study. Eur. Phys. J. Plus 139, 74 (2024). https://doi.org/10.1140/epjp/s13360-024-04879-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04879-9

Navigation