Skip to main content
Log in

Investigation on the structure properties of thorium nuclei spanned between the drip-lines and the prediction of shell closure

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The structure properties of nuclei that reside significantly away from the line of \(\beta\)-stability are currently the focus of both theoretical and experimental studies. Various theoretical methodologies are being employed to explore these nuclear structure properties. In our research, we have calculated several structure properties, including binding energy, charge radii, root mean square (rms) radii and their isotopic variations, two-neutron separation energy, shell gap, chemical potential, quadrupole deformation, density distribution, and single-particle energy for thorium nuclei, which are found both on and off the line of \(\beta\)-stability. Thorium nuclei are particularly intriguing due to their diverse practical applications, including their role in thorium-based nuclear reactors and their involvement at various stages of nucleosynthesis. This study helps us gain insight into how nuclear properties change with the number of neutrons and enables us to predict shell closures and nuclear stability. The estimated values were compared with available experimental and theoretical data and are found to be in good agreement. The departure from a linear trend observed around specific neutron numbers, specifically N = 126, 138, and 184, in graphs depicting various properties against neutron number and single-particle energy gap, can be attributed to the concept of neutron magic numbers. Among these, N = 126 and N = 184 are considered neutron magic numbers, while N = 138 is regarded as a semi-magic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data supporting the findings of this study are presented in figures].

References

  1. B. Pfeiffer, K.-L. Kratz, F.-K. Thielemann, W. Walters, Nuclear structure studies for the astrophysical r-process. Nucl. Phys. A 693(1–2), 282–324 (2001)

    Article  ADS  Google Scholar 

  2. R.K. Gupta, M. Balasubramaniam, S. Kumar, S. Patra, G. Munzenberg, W. Greiner, Magic numbers in exotic light nuclei near drip lines. J. Phys. G Nucl. Particle Phys. 32(4), 565 (2006)

    Article  ADS  Google Scholar 

  3. D. Vretenar, Nuclear structure far from stability. Nucl. Phys. A 751, 264–281 (2005)

    Article  ADS  Google Scholar 

  4. C. He, J.-Y. Guo, Structure and \(\alpha\) decay for the neutron-deficient nuclei with 89\(\le\) z\(\le\) 94 in the density-dependent cluster model combined with a relativistic mean-field approach. Phys. Rev. C 106(6), 064310 (2022)

    Article  ADS  Google Scholar 

  5. B.A. Marsh, T. Day Goodacre, S. Sels, Y. Tsunoda, B. Andel, A.N. Andreyev, N. Althubiti, D. Atanasov, A. Barzakh, J. Billowes et al., Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14(12), 1163–1167 (2018)

    Article  Google Scholar 

  6. X. Yang, C. Wraith, L. Xie, C. Babcock, J. Billowes, M. Bissell, K. Blaum, B. Cheal, K. Flanagan, R.G. Ruiz et al., Isomer shift and magnetic moment of the long-lived 1/2+ isomer in zn 49 30 79: Signature of shape coexistence near ni 78. Phys. Rev. Lett. 116(18), 182502 (2016)

    Article  ADS  Google Scholar 

  7. A. Krasznahorkay, H. Akimune, A. Van Den Berg, N. Blasi, S. Brandenburg, M. Csatlo, M. Fujiwara, J. Gulya, M. Harakeh, M. Hunyadi et al., Neutron-skin thickness in neutron-rich isotopes. Nucl. Phys. A 731, 224–234 (2004)

    Article  ADS  Google Scholar 

  8. W. Nortershauser, D. Tiedemann, M. Zakova, Z. Andjelkovic, K. Blaum, M.L. Bissell, R. Cazan, G. Drake, C. Geppert, M. Kowalska et al., Nuclear charge radii of be 7, 9, 10 and the one-neutron halo nucleus be 11. Physical review letters 102(6), 062503 (2009)

    Article  ADS  Google Scholar 

  9. C. Gorges, L. Rodriguez, D. Balabanski, M. Bissell, K. Blaum, B. Cheal, R.G. Ruiz, G. Georgiev, W. Gins, H. Heylen et al., Laser spectroscopy of neutron-rich tin isotopes: a discontinuity in charge radii across the n= 82 shell closure. Phys. Rev. Lett. 122(19), 192502 (2019)

    Article  ADS  Google Scholar 

  10. B. Bastin, S. Grevy, D. Sohler, O. Sorlin, Z. Dombradi, N. Achouri, J. Angelique, F. Azaiez, D. Baiborodin, R. Borcea, et al.: Collapse of the n= 28 shell closure in si-42. Phys. Rev. Lett. 99(2) (2007)

  11. F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N. Orr, Z. Ren, P. Roussel-Chomaz, G. Auger, D. Baiborodin, A. Belozyorov et al., Shape coexistence and the n= 28 shell closure far from stability. Phys. Rev. Lett. 84(22), 5062 (2000)

    Article  ADS  Google Scholar 

  12. M. Bender, P.-H. Heenen, P.-G. Reinhard, Self-consistent mean-field models for nuclear structure. Rev. Mod. Phys. 75(1), 121 (2003)

    Article  ADS  Google Scholar 

  13. T. Niks̆ić, D. Vretenar, P. Ring, Progress in Particle and Nuclear Physics 66(3), 519–548 (2011) 10.1016/j.ppnp.2011.01.055

  14. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Physics Reports 409(3), 101–259 (2005). https://doi.org/10.1016/j.physrep.2004.10.001

  15. T. Nikšić, D. Vretenar, P. Ring, Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Phys. Rev. C 78(3), 034318 (2008)

    Article  ADS  Google Scholar 

  16. Y. Tian, Z.Y. Ma, P. Ring, A finite range pairing force for density functional theory in superfluid nuclei. Phys. Lett. B 676(1), 44–50 (2009). https://doi.org/10.1016/j.physletb.2009.04.067

    Article  ADS  Google Scholar 

  17. K. Pomorski, P. Ring, G. Lalazissis, A. Baran, Z. Lojewski, B. Nerlo-Pomorska, M. Warda, Ground state properties of the \(\beta\) stable nuclei in various mean field theories. Nucl. Phys. A 624(3), 349–369 (1997)

    Article  ADS  Google Scholar 

  18. A. Ozawa, T. Suzuki, I. Tanihata, Nuclear size and related topics. Nucl. Phys. A 693(1–2), 32–62 (2001)

    Article  ADS  Google Scholar 

  19. B. Cheal, K. Flanagan, Progress in laser spectroscopy at radioactive ion beam facilities. J. Phys. G Nucl. Part. Phys. 37(11), 113101 (2010)

    Article  ADS  Google Scholar 

  20. K. Blaum, J. Dilling, W. Nortershauser, Precision atomic physics techniques for nuclear physics with radioactive beams. Phys. Scripta 2013(T152), 014017 (2013)

    Article  Google Scholar 

  21. I.U. Roederer, K.-L. Kratz, A. Frebel, N. Christlieb, B. Pfeiffer, J.J. Cowan, C. Sneden, The end of nucleosynthesis: production of lead and thorium in the early galaxy. Astrophys. J. 698(2), 1963 (2009)

    Article  ADS  Google Scholar 

  22. A. Choplin, S. Goriely, L. Siess, Synthesis of thorium and uranium in asymptotic giant branch stars. Astron. Astrophys. 667, 13 (2022)

    Article  ADS  Google Scholar 

  23. Niks̆ić, T., Paar, N., Vretenar, D., Ring, P., DIRHB A relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185(6), 1808–1821 (2014). https://doi.org/10.1016/.cpc.2014.02.027

  24. J. Boguta, A. Bodmer, Relativistic calculation of nuclear matter and the nuclear surface. Nucl. Phys. A 292(3), 413–428 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Pannert, P. Ring, J. Boguta, Relativistic mean-field theory and nuclear deformation. Phys. Rev. Lett. 59(21), 2420 (1987)

    Article  ADS  Google Scholar 

  26. R. Brockmann, H. Toki, Relativistic density-dependent hartree approach for finite nuclei. Phys. Rev. Lett. 68(23), 3408 (1992)

    Article  ADS  Google Scholar 

  27. F. Hofmann, C. Keil, H. Lenske, Density dependent hadron field theory for asymmetric nuclear matter and exotic nuclei. Phys. Rev. C 64(3), 034314 (2001)

    Article  ADS  Google Scholar 

  28. S. Typel, H.H. Wolter, Nucl. Phys. A 656(3), 331–364 (1999). https://doi.org/10.1016/S0375-9474(99)00310-3

    Article  ADS  Google Scholar 

  29. T. Niksic, D. Vretenar, P. Finelli, P. Ring, Relativistic hartree-bogoliubov model with density-dependent meson-nucleon couplings. Phys. Rev. C 66(2), 024306 (2002)

    Article  ADS  Google Scholar 

  30. F. Jong, H. Lenske, Asymmetric nuclear matter in the relativistic Brueckner-Hartree-Fock approach. Phys. Rev. C 57, 3099–3107 (1998) 10.1103/PhysRevC.57.3099

  31. P. Manakos, T. Mannel, Renormalized relativistic hartree fock models with skyrme type interactions. Zeitschrift für Physik A Atomic Nuclei 334, 481–489 (1989)

  32. J.J. Rusnak, R.J. Furnstahl, Nucl. Phys. A 627(3), 495 (1997). https://doi.org/10.1016/S0375-9474(97)00598-8

    Article  ADS  Google Scholar 

  33. T. Bürvenich, D.G. Madland, J.A. Maruhn, P.-G. Reinhard, Nuclear ground state observables and QCD scaling in a refined relativistic point coupling model. Phys. Rev. C 65: 044308 (2002) 10.1103/PhysRevC.65.044308

  34. P.W. Zhao, Z.P. Li, J.M. Yao, Meng, J. Phys. Rev. C 82, 054319 (2010) 10.1103/PhysRevC.82.054319

  35. R. Machleidt, The meson theory of nuclear forces and nuclear structure. Springer, 189–376 (1989)

  36. P. Ring, P. Schuck, The nuclear many-body problem. Springer Science & Business Media (2004)

  37. G.A. Lalazissis, T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 71, 024312 (2005). https://doi.org/10.1103/PhysRevC.71.024312

    Article  ADS  Google Scholar 

  38. B. Kumar, S.K. Biswal, S.K. Singh, S.K. Patra, Phys. Rev. C 92, 054314 (2015). https://doi.org/10.1103/PhysRevC.92.054314

    Article  ADS  Google Scholar 

  39. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, Atomic Data and Nuclear Data Tables 109–110, 1–204 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  ADS  Google Scholar 

  40. https://www.nndc.bnl.gov/nudat3/

  41. G. Alkhazov, S. Belostotsky, O. Domchenkov, Y.V. Dotsenko, N. Kuropatkin, M. Schuvaev, A. Vorobyov, Nuclear sizes of 40, 48ca and 32, 34s isotopes determined from 1 gev proton elastic scattering. Phys. Lett. B 57(1), 47–50 (1975)

    Article  ADS  Google Scholar 

  42. I. Angeli, K.P. Marinova, Atomic Data and Nuclear Data Tables 99(1), 69 (2013). https://doi.org/10.1016/j.adt.2011.12.006

    Article  ADS  Google Scholar 

  43. W. Seif, H. Mansour, Systematics of nucleon density distributions and neutron skin of nuclei. Int. J. Modern Phys. E 24(11), 1550083 (2015)

    Article  ADS  Google Scholar 

  44. Chishti, M.M.R., O Donnell, D., Battaglia, G., Bowry, M., Jaroszynski, D.A., Singh, B.S.N., Scheck, M., Spagnoletti, P., Smith, J.F. Nature Physics. 16, 1853 (2020) 10.1038/s41567-020-0899-4

  45. S. Raman, C. Nestor Jr., P. Tikkanen, Transition probability from the ground to the first-excited 2+ state of even-even nuclides. Atomic Data and Nuclear Data Tables 78(1), 1–128 (2001)

    Article  ADS  Google Scholar 

  46. G. Saxena, M. Kumawat, M. Kaushik, S.K. Jain, M. Aggarwal, Phys. Lett. B 788, 1–6 (2019). https://doi.org/10.1016/j.physletb.2018.08.076

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ummukulsu E. acknowledges with thanks the financial support from CSIR, Govt. of India, by way of the fellowship under the SRF scheme. The authors wish to thank the Department of Computer Science, University of Calicut, for providing with the necessary computing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ummukulsu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ummukulsu, E., Joseph, A. Investigation on the structure properties of thorium nuclei spanned between the drip-lines and the prediction of shell closure. Eur. Phys. J. Plus 138, 1077 (2023). https://doi.org/10.1140/epjp/s13360-023-04742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04742-3

Navigation