Skip to main content

Advertisement

Log in

Dynamics of a delayed cytokine-enhanced diffusive HIV model with a general incidence and CTL immune response

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, a new HIV CD4\(^{+}\)T cells reaction-diffusion model has been introduced, which aims to explore the joint impact of cell-free infection, cytokine-enhanced viral infection, CTL immune response and time delay. Our results show that inflammatory cytokine infection, time delay and reaction-diffusion play an important role in HIV model and can not be ignored. First, we investigate the existence and nonnegativity of the solution of the model. Then, we obtain the existence of three equilibria namely infection-free equilibrium \(E_{0}\), immune-free equilibrium \(E_{1}\) and immunity-inactivated equilibrium \(E_{2}\) respectively. Next, two threshold parameters \(R_{0}\) (basic reproduction number) and \(R_{CTL}\) (immune response reproduction number) are defined, which determine the dynamic behavior of the model. Using Lyapunov functionals and LaSalle’s invariance principle, we show that \(E_{0}\) is globally asymptotically stable when \(R_{0}\le 1\); If \(R_{0}>1\), the model is uniformly persistent and \(E_{1}\) is globally asymptotically stable when \(R_{CTL}<1<R_{0}\); \(E_{2}\) is globally asymptotically stable when \(R_{0}>1\) and \(R_{CTL}>1\). Finally, a special case is given to show the global attractiveness of the three equilibria by numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

No data was used for the research described in the article.

References

  1. D. Wodarz, D.N. Levy, Human immunodeficiency virus evolution towards reduced replicative fitness in vivo and the development of AIDS. Proc. Royal Soc. B: Biol. Sci. 274(1624), 2481–2491 (2007)

    Article  Google Scholar 

  2. https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics (2023)

  3. M.A. Nowak, C.R. Bangham, Population dynamics of immune responses to persistent viruses. Science 272(5258), 74–79 (1996)

    Article  ADS  Google Scholar 

  4. P. Tamilalagan, S. Karthiga, P. Manivannan, Dynamics of fractional order HIV infection model with antibody and cytotoxic T-lymphocyte immune responses. J. Comput. Appl. Math. 382, 113064 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, MAu. Rehman, A.S. Alshomrani, Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission. Chaos, Solit. Fract. 134, 109706 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Günerhan, H. Dutta, M.A. Dokuyucu, W. Adel, Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators. Chaos, Solit. Fract. 139, 110053 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. R.V. Culshaw, S. Ruan, R.J. Spiteri, Optimal HIV treatment by maximising immune response. J. Math. Biol. 48(5), 545–562 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Allali, S. Harroudi, D.F. Torres, Optimal control of an HIV model with a trilinear antibody growth function. Discrete Contin. Dyn. Syst.-Ser. S 15(3), 501–518 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Ma, X. Yu, The effect of environmental noise on threshold dynamics for a stochastic viral infection model with two modes of transmission and immune impairment. Chaos, Solitons Fract. 134, 109699 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Wang, Z. Liu, Y. Li, D. Xu, Complete dynamical analysis for a nonlinear HTLV-I infection model with distributed delay, CTL response and immune impairment. Discrete Contin. Dyn. Syst.-Ser. B 25(3), 917–933 (2020)

    MathSciNet  MATH  Google Scholar 

  11. X. Yang, Y. Su, X. Zhuo, T. Gao, Global analysis for a delayed HCV model with saturation incidence and two target cells. Chaos, Solitons Fract. 166, 112950 (2023)

    Article  MathSciNet  Google Scholar 

  12. Y. Yang, R. Xu, Mathematical analysis of a delayed HIV infection model with saturated CTL immune response and immune impairment. J. Appl. Math. Comput. 68(4), 1–16 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Deng, H. Shu, L. Wang, X.S. Wang, Viral dynamics with immune responses: effects of distributed delays and Filippov antiretroviral therapy. J. Math. Biol. 86(3), 37 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Yosyingyong, R. Viriyapong, Global dynamics of multiple delays within-host model for a hepatitis B virus infection of hepatocytes with immune response and drug therapy. Math. Biosci. Eng. 20(4), 7349–7386 (2023)

    Article  MathSciNet  Google Scholar 

  15. J. Yang, L. Wang, Dynamics analysis of a delayed HIV infection model with CTL immune response and antibody immune response. Acta Mathematica Scientia 41(3), 991–1016 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Zhu, Y. Luo, M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTL-response delay. Comput. Math. Appl. 62(8), 3091–3102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Y. Yang, G. Huang, Y. Dong, Stability and Hopf bifurcation of an HIV infection model with two time delays. Math. Biosci. Eng. 20(2), 1938–1959 (2023)

    Article  MathSciNet  Google Scholar 

  18. H. Yan, Y. Xiao, Q. Yan, X. Liu, Dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, general incidence rate, intracellular delay, and ctl immune responses. Math. Methods Appl. Sci. 42(18), 6385–6406 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. N.H. Alshamrani, Stability of a general adaptive immunity HIV infection model with silent infected cell-to-cell spread. Chaos, Solitons Fract. 150, 110422 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. X. Wang, Y. Tao, X. Song, Global stability of a virus dynamics model with Beddington-Deangelis incidence rate and CTL immune response. Nonlinear Dyn. 66(4), 825–830 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. N. Bairagi, D. Adak, Dynamics of cytotoxic T-lymphocytes and helper cells in human immunodeficiency virus infection with Hill-type infection rate and sigmoidal CTL expansion. Chaos, Solitons Fract. 103, 52–67 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B. Li, F. Zhang, X. Wang, A delayed diffusive HBV model with nonlinear incidence and CTL immune response. Math. Methods Appl. Sci. 45(17), 11930–11961 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Su, D. Sun, L. Zhao, Global analysis of a humoral and cellular immunity virus dynamics model with the Beddington-DeAngelis incidence rate. Math. Methods Appl. Sci. 38(14), 2984–2993 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. N. Akbari, R. Asheghi, M. Nasirian, Stability and dynamic of HIV-1 mathematical model with logistic target cell growth, treatment rate, cure rate and cell-to-cell spread. Taiwan. J. Math. 26(2), 411–441 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Xu, Y. Geng, S. Zhang, Global stability and hopf bifurcation in a delayed viral infection model with cell-to-cell transmission and humoral immune response. Int. J. Bifurc. Chaos 29(12), 1950161 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Guo, Z. Qiu, L. Rong, Analysis of an HIV model with immune responses and cell-to-cell transmission. Bull. Malays. Math. Sci. Soc. 43(1), 581–607 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Yang, T. Zhang, Y. Xu, J. Zhou, A delayed virus infection model with cell-to-cell transmission and CTL immune response. Int. J. Bifurc. Chaos 27(10), 1750150 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. G. Doitsh, N.L. Galloway, X. Geng, Z. Yang, K.M. Monroe, O. Zepeda, P.W. Hunt, H. Hatano, S. Sowinski, I. Muñoz-Arias et al., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature 505(7484), 509–514 (2014)

    Article  ADS  Google Scholar 

  29. S. Wang, P. Hottz, M. Schechter, L. Rong, Modeling the slow CD4+ T cell decline in HIV-infected individuals. PLoS Comput. Biol. 11(12), e1004665 (2015)

    Article  ADS  Google Scholar 

  30. Y. Jiang, T. Zhang, Global stability of a cytokine-enhanced viral infection model with nonlinear incidence rate and time delays. Appl. Math. Lett. 132, 108110 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  31. N. Ahmed, M. Rafiq, W. Adel, H. Rezazadeh, I. Khan, K.S. Nisar, Structure preserving numerical analysis of HIV and CD4+ T-cells reaction diffusion model in two space dimensions. Chaos, Solitons Fract. 139, 110307 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. N. Ahmed, A. Elsonbaty, W. Adel, D. Baleanu, M. Rafiq, Stability analysis and numerical simulations of spatiotemporal HIV CD4+ T cell model with drug therapy. Chaos: An Interdiscip. J. Nonlinear Sci. 30(8), (2020)

  33. W. Wang, Z. Feng, Global dynamics of a diffusive viral infection model with spatial heterogeneity. Nonlinear Anal. Real World Appl. 72, 103763 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Zhang, X. Xu, X. Wang, Dynamic analysis of a cytokine-enhanced viral infection model with time delays and CTL immune response. Chaos, Solitons Fract. 170, 113357 (2023)

    Article  MathSciNet  Google Scholar 

  35. K. Wang, W. Wang, Propagation of HBV with spatial dependence. Math. Biosci. 210(1), 78–95 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. M.J. Miller, S.H. Wei, I. Parker, M.D. Cahalan, Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296(5574), 1869–1873 (2002)

    Article  ADS  Google Scholar 

  37. R. Martin, H. Smith, Abstract functional-differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321(1), 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  38. Y. Lou, X.Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population. J. Math. Biol. 62(4), 543–568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. R.B. Guenther, J.W. Lee, Partial differential equations of mathematical physics and integral equations (Courier Corporation, New York, 1996)

    Google Scholar 

  40. W. Wang, X.Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11(4), 1652–1673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Su, D. Sun, L. Zhao, Global analysis of a humoral and cellular immunity virus dynamics model with the Beddington-Deangelis incidence rate. Math. Methods Appl. Sci. 38(14), 2984–2993 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. J.P. La Salle, The Stability of Dynamical Systems (SIAM, Philadelphia, 1976)

    Book  Google Scholar 

  43. H. Smith, X.Q. Zhao, Robust persistence for semidynamical systems. Nonlinear Anal. Theory Methods Appl. 47(9), 6169–6179 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Miao, M. Jiao, Threshold dynamics of an HIV-1 model with both virus-to-cell and cell-to-cell transmissions, immune responses, and three delays. Int. J. Nonlinear Sci. Num. Simul. 24(2), 437–466 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank the reviewer’s comments for this paper.

Author information

Authors and Affiliations

Authors

Contributions

CC: Conceptualization, Methodology, Investigation, Writing-original draft. ZY, YZ, ZZ: Investigation, Software, Writing-review.

Corresponding author

Correspondence to Zhijian Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Ye, Z., Zhou, Y. et al. Dynamics of a delayed cytokine-enhanced diffusive HIV model with a general incidence and CTL immune response. Eur. Phys. J. Plus 138, 1083 (2023). https://doi.org/10.1140/epjp/s13360-023-04734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04734-3

Navigation