Skip to main content
Log in

On analysis of entropy measure via logarithmic regression model for 2D-honeycomb networks

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A well-known structure in materials science and nanotechnology, the 2D-Honeycomb network has unique topological features and prospective uses. In this study, we introduce and explore newly defined Zagreb indices designed exclusively for 2D-Honeycomb Networks as we dig into the world of complicated network research. We investigate the links between these indices and entropy measures through a thorough analysis, shedding insight into the complex interaction between structural features and information content. In addition, we use a logarithmic regression model to reveal the network’s underlying patterns. Our research advances knowledge of 2D-honeycomb networks and illustrates the utility of logarithmic regression in complex system modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

In this article, no data were utilized.

References

  1. Z. Shao, M.K. Siddiqui, M.H. Muhammad, Computing zagreb indices and zagreb polynomials for symmetrical nanotubes. Symmetry 10(7), 244–260 (2018)

    Article  ADS  Google Scholar 

  2. X. Zhang, M. Naeem, A.Q. Baig, M.A. Zahid, Study of hardness of superhard crystals by topological indices. J. Chem. 10, 7–20 (2021)

    Google Scholar 

  3. M.A. Rashid, S. Ahmad, M.K. Siddiqui, S. Manzoor, M. Dhlamini, An analysis, of eccentricity-based invariants for biochemical hypernetworks. Complexity 2021, 1–14 (2021)

    Google Scholar 

  4. W. Gao, M.K. Siddiqui, M. Naeem, N.A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures. Molecules 22(9), 1496–1515 (2017)

    Article  Google Scholar 

  5. X. Zhang, X. Wu, S. Akhter, M.K. Jamil, J.B. Liu, M.R. Farahani, Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs. Symmetry 10(12), 751–786 (2018)

    Article  ADS  MATH  Google Scholar 

  6. X. Zhang, H.M. Awais, M. Javaid, M.K. Siddiqui, Multiplicative Zagreb indices of molecular graphs. J. Chem. 2019, 1–19 (2019)

    Article  Google Scholar 

  7. X. Zhang, A. Rauf, M. Ishtiaq, M.K. Siddiqui, M.H. Muhammad, On degree based topological properties of two carbon nanotubes. Polycycl. Aromat. Comp. 42(3), 866–884 (2020)

    Article  Google Scholar 

  8. X. Zhang, A. Raza, A. Fahad, M.K. Jamil, M.A. Chaudhry, Z. Iqbal, On face index of silicon carbides, discrete dynamics in nature and society. 2020, 1–12 (2020)

  9. F. Deng, X. Zhang, M. Alaeiyan, A. Mehboob, M.R. Farahani, Topological indices of the pent-heptagonal nanosheets VC5C7 and HC5C7. Adv. Mater. Sci. Eng. 2019, 9594549 (2019)

    Article  Google Scholar 

  10. X. Zhang, M.K. Siddiqui, S. Javed, L. Sherin, F. Kausar, M.H. Muhammad, Physical analysis of heat for formation and entropy of ceria oxide using topological indices. Comb. Chem. High Throughput Screen. 25(3), 441–450 (2022)

    Article  Google Scholar 

  11. X. Zhang, Z. Zhang, N. Chidambaram et al., On degree and distance-based topological indices of certain interconnection networks. Eur. Phys. J. Plus 137(834), 1–12 (2022)

    ADS  Google Scholar 

  12. Xiujun Zhang, M. Ahmad Bilal, Mobeen Munir, Hafiz Mutte, ur Rehman, Maximum degree and minimum degree spectral radii of some graph operations. Math. Biosci. Eng. 19(10), 10108–10121 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Zhang, N. Idrees, S. Kanwal, M.J. Saif, F. Saeed, Computing topological invariants of deep neural networks. Comput. Intell. Neurosci. 2022, 9051908 (2022)

    Article  Google Scholar 

  14. M. Arockiaraj, A.B. Greeni, A.A. Kalaam, Linear versus cubic regression models for analyzing generalized reverse degree based topological indices of certain latest corona treatment drug molecules. Int. J. Quant. Chem. 2(3), 235–247 (2023)

    Google Scholar 

  15. V. Ravi, K. Desikan, Curvilinear regression analysis of benzenoid hydrocarbons and computation of some reduced reverse degree based topological indices for hyaluronic acid-paclitaxel conjugates. Sci. Rep. 13(1), 32–39 (2023)

    Article  Google Scholar 

  16. M. Naeem, M. Atif, A. Khalid, M. Sajid, M.A. Mustafa, Computation of degree-based topological indices for porphyrazine and tetrakis porphyrazine. Mol. Phys. 7(4), 112–126 (2023)

    Google Scholar 

  17. S. Zaman, H.S.A. Yaqoob, A. Ullah, M. Sheikh, QSPR analysis of some novel drugs used in blood cancer treatment via degree based topological indices and regression models. Polycyclic Aromat. Compd. 5(4), 1–17 (2023)

    Article  Google Scholar 

  18. Y. Zhang, A. Khalid, M.K. Siddiqui, H. Rehman, M. Ishtiaq, M. Cancan, On analysis of temperature based topological indices of some Covid-19 drugs. Polycyclic Aromat. Compd. 43(4), 3810–3826 (2023)

    Article  Google Scholar 

  19. N. Kansal, P. Garg, O. Singh, Temperature-based topological indices and QSPR analysis of COVID-19 drugs. Polycyclic Aromat. Compd. 43(5), 4148–4169 (2023)

    Article  Google Scholar 

  20. T. Augustine, S. Roy, J. Sahaya Vijay, J. Maria Thomas, P. Shanmugam, Topological study on degree-based molecular descriptors of fullerene cages. Mol. Phys. 121(4), 213–227 (2023)

    Article  Google Scholar 

  21. L.R.M. Gnanaraj, D. Ganesan, M.K. Siddiqui, Topological indices and QSPR analysis of NSAID drugs. Polycyclic Aromat. Compd. 4(5), 1–17 (2023)

    Article  Google Scholar 

  22. W. Hui, M.K. Siddiqui, S. Akhter, S. Hafeez, Y. Ali, On degree based topological aspects of some dendrimers. Polycyclic Aromat. Compd. 43(4), 3601–3612 (2023)

    Article  Google Scholar 

  23. Z.H. Hui, M. Naeem, A. Rauf, A. Aslam, Estimating the physicochemical properties of antiemetics using degree-based topological descriptors. Mol. Phys. 121(5), 113–123 (2023)

    Article  Google Scholar 

  24. M.C. Shanmukha, S. Lee, A. Usha, K.C. Shilpa, M. Azeem, Degree-based entropy descriptors of graphenylene using topological indices. Comput. Model. Eng. Sci. 20(23), 1–25 (2023)

    Google Scholar 

  25. X. Zuo, H. Shooshtari, M. Cancan, Entropy measures of topological indices based molecular structure of benzenoid systems. Polycyclic Aromat. Compd. 5(7), 1–11 (2023)

    Google Scholar 

  26. S. Sharma, V.K. Bhat, S. Lal, Multiplicative topological indices of the crystal cubic carbon structure. Cryst. Res. Technol. 58(3), 22–38 (2023)

    Article  Google Scholar 

  27. R. Durgut, T. Turacı, Computing some eccentricity-based topological indices of para-line graphs of hexagonal cactus chains. Polycyclic Aromat. Compd. 43(1), 115–130 (2023)

    Article  Google Scholar 

  28. M.S. Sardar, M.A. Ali, F. Ashraf, M. Cancan, On topological indices of double and strong double graph of silicon carbide Si2 C3-I [p, q]. Eurasian Chem. Commun 5(4), 37–49 (2023)

    Google Scholar 

  29. G. Zhang, A. Mushtaq, A. Aslam, S. Parveen, S. Kanwal, Studying some networks using topological descriptors and multi-criterion decision-making. Mol. Phys. 8(7), 227–240 (2023)

    Google Scholar 

  30. J. Amjadi, H. Shooshtari, A. Jahanbani, R. Hasni, Degree-based weighted entropy indices of polycyclic aromatic hydrocarbons. Polycyclic Aromat. Compd. 43(2), 1482–1494 (2023)

    Article  Google Scholar 

  31. S. Zaman, N. Shabbir, Mathematical formulation and irregularity topological indices of cellular neural network system (2023)

  32. N.S. Basavarajappa, K. Niranjan, K.C. Shilpa, Computation of degree-based numerical descriptors of porous graphene. Lett. Appl. NanoBioSci. 12(4), 117 (2023)

    Google Scholar 

  33. M.Y.H. Malik, M.A. Binyamin, S. Hayat, Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications. Polycyclic Aromat. Compd. 42(9), 6267–6281 (2022)

    Article  Google Scholar 

  34. Z.Q. Chu, M.K. Siddiqui, S. Manzoor, S.A.K. Kirmani, M.F. Hanif, M.H. Muhammad, On rational curve fitting between topological indices and entropy measures for graphite carbon nitride. Polycyclic Aromat. Compd. 43(3), 2553–2570 (2023)

    Article  Google Scholar 

  35. M.U. Ghani, F.J.H. Campena, S. Ali, S. Dehraj, M. Cancan, F.M. Alharbi, A.M. Galal, Characterizations of chemical networks entropies by K-banhatii topological indices. Symmetry 15(1), 143 (2023)

    Article  ADS  Google Scholar 

  36. X. Zuo, H. Shooshtari, M. Cancan, Entropy measures of topological indices based molecular structure of benzenoid systems. Polycyclic Aromat. Compd. 15(4), 1–11 (2023)

    Google Scholar 

  37. M.C. Shanmukha, S. Lee, A. Usha, K.C. Shilpa, M. Azeem, Degree-based entropy descriptors of graphenylene using topological indices. Comput. Model. Eng. Sci. 2023, 1–25 (2023)

    Google Scholar 

  38. M. Farhan Hanif, H. Mahmood, On topological descriptor based heat of formation and entropy measure for actinium (III) fluoride. Mol. Phys. 5(3), 345–364 (2023)

    Google Scholar 

  39. Z.H. Hui, A. Rauf, M. Naeem, A. Aslam, A.V. Saleem, Quality testing analysis of Ve-degree based entropies by using benzene derivatives. Int. J. Quant. Chem. 123(17), 17–35 (2023)

    Article  Google Scholar 

  40. K. Jacob, J. Clement, M. Arockiaraj, D. Paul, K. Balasubramanian, Topological characterization and entropy measures of tetragonal zeolite merlinoites. J. Mol. Struct. 1277, 134–151 (2023)

    Article  Google Scholar 

  41. M.S. Zakir, M. Arshad, M.K. Naseer, Z. Kanwal, I. Ahmad, M. Cancan, Evaluation of weighted entropies based on topological indices for poly propyl ether imine dendrimers

  42. Y. Tang, M. Labba, M.K. Jamil, M. Azeem, X. Zhang, Edge valency-based entropies of tetrahedral sheets of clay minerals. PLoS ONE 18(7), 35–46 (2023)

    Article  Google Scholar 

  43. P. Liqiong, M.F. Hanif, H. Mahmood, M.K. Siddiqui, S. Manzoor, M. Cancan, On entropy measures for crystallographic structure of silicon-carbon networks. Polycyclic Aromat. Compd. 5(3), 1–28 (2023)

    Article  Google Scholar 

  44. M. Ren, Analysis of higher education management strategy based on entropy and dissipative structure theory. Appl. Math. Nonlinear Sci. 8, 1529–1538 (2023)

    Article  Google Scholar 

  45. X. Xia, H. Tian, Y. Wang, Innovations to attribute reduction of covering decision system based on conditional information entropy. Appl. Math. Nonlinear Sci. 8, 2103–2116 (2022)

    Article  Google Scholar 

  46. J. Zhao, Analysis and elaboration of enterprise management innovation path based on logistic regression perspective. Appl. Math. Nonlinear Sci. 8, 2003–2014 (2023)

    Google Scholar 

  47. W. Cheng, Model construction of influencing factors of physical education core quality cultivation based on multiple linear regression. Appl. Math. Nonlinear Sci. 8, 2015–2028 (2023)

    Google Scholar 

  48. W. Ren. The analysis method of the impact of missing audit information on the securities investment decisions based on Logistic regression models. Appl. Math. Nonlinear Sci. 8, 1539–1552

  49. Y. Shao, C. Qin, Strategies for constructing mathematical models of nonlinear systems based on multiple linear regression models. Appl. Math. Nonlinear Sci. 8, 1553–1562 (2023)

    Google Scholar 

  50. Z. Chen, M. Dehmer, Y. Shi, A note on distance-based graph entropies. Entropy 16(10), 5416–5427 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. S.R. Batten, N.R. Champness, Coordination polymers and metal-organic frameworks: materials by design. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375(2084), 20160032 (2017)

    Article  ADS  Google Scholar 

  52. H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou, Recent advances in gas storage and separation using metal-organic frameworks. Mater. Today 21(2), 108–121 (2018)

    Article  Google Scholar 

  53. Q. Qian, P.A. Asinger, M.J. Lee, G. Han, K. Mizrahi Rodriguez, S. Lin, Z.P. Smith, MOF-based membranes for gas separations. Chem. Rev. 120(16), 8161–8266 (2020)

    Article  Google Scholar 

  54. R.W. Seidel, I.M. Oppel, 2D Honeycomb Coordination Polymers from 2, -Dithiobis (pyridine N-oxide) and Bismuth (III) Halides. J. Chem. Crystallogr. 53(1), 105–111 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by the project: “Mathematical Modeling and Intelligent Computing Research Center” with grant number(GKY-2022CQJG-1)

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Muhammad Kamran Siddiqui.

Ethics declarations

Conflicts of interest

Authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Hanif, M.F., Siddiqui, M.K. et al. On analysis of entropy measure via logarithmic regression model for 2D-honeycomb networks. Eur. Phys. J. Plus 138, 924 (2023). https://doi.org/10.1140/epjp/s13360-023-04547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04547-4

Navigation