Skip to main content
Log in

Direct numerical simulation of a moving droplet impacting a moving particle: effects of particle–droplet density ratio, Bond number, and Reynolds number

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, a moving droplet impacting a moving particle is investigated for a wide range of impact conditions: particle–droplet density ratio (1 ≤ Ω ≤ 10), Bond number (0.177 ≤ Bo ≤ 1.765), and Reynolds number (16.381 ≤ Re ≤ 32.763), by using the lattice Boltzmann method (LBM) coupled with a modified immersed boundary method. Six key results are obtained. (1) Three collision regimes are identified in this work: separation, deposition, and agglomeration. (2) The separation regime can be split into two sub-regimes: separation-I and separation-II. (3) And the agglomeration also has two sub-regimes: agglomeration-I and agglomeration-II. In the available literature, the agglomeration-II was discussed only for a droplet impacting a fixed particle, but never for a moving particle. (4) For deposition and agglomeration, the vertical velocity of the particle experiences three stages, while for separation, the vertical velocity of the particle can be classified into four stages. (5) For separation-II process, the vertical velocity of the droplet is larger than its particle counterpart. (6) A regime map for Re–Ω is concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.].

References

  1. C. Andronache, Estimated variability of below-cloud aerosol removal by rainfall for observed aerosol size distributions. Atmos. Chem. Phys. 3, 131–143 (2003)

    Article  ADS  Google Scholar 

  2. D.M. Chate, T.S. Pranesha, Field studies of scavenging of aerosols by rain events. J. Aerosol. Sci. 35(6), 695–706 (2004)

    Article  ADS  Google Scholar 

  3. V.M. Kerminen, H. Lihavainen, M. Komppula, Y. Viisanen, M. Kulmala, Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophys. Res. Lett. 32(14) (2005).

  4. D.O. Topping, G. McFiggans, Tight coupling of particle size, number and composition in atmospheric cloud droplet activation. Atmos. Chem. Phys. 12(7), 3253–3260 (2012)

    Article  ADS  Google Scholar 

  5. M.A. Ratcliff, B. Windom, G.M. Fioroni, P. St John, S. Burke, J. Burton, E.D. Christensen, P. Sindler, R.L. McCormick, Impact of ethanol blending into gasoline on aromatic compound evaporation and particle emissions from a gasoline direct injection engine. Appl. Energy 250, 1618–1631 (2019)

    Article  Google Scholar 

  6. M. Medina, F.M. Alzahrani, M. Fatouraie, M.S. Wooldridge, V. Sick, Mechanisms of fuel injector tip wetting and tip drying based on experimental measurements of engine-out particulate emissions from gasoline direct-injection engines. Int J Engine Res 22(6), 2035–2053 (2021)

    Article  Google Scholar 

  7. H. Yi, J. Seo, Y.S. Yu, Y. Lim, S. Lee, J. Lee, H. Song, S. Park, Effects of lubricant-fuel mixing on particle emissions in a single cylinder direct injection spark ignition engine. Sci. Rep. 12(1), 18 (2022)

    Article  ADS  Google Scholar 

  8. L. Li, I. Kemp, M. Palmer, A DEM-based mechanistic model for scale-up of industrial tablet coating processes. Powder Technol. 364, 698–707 (2020)

    Article  Google Scholar 

  9. M. Khoder, V. Schropp, S. Zeitler, B. Pereira, R. Habashy, P.G. Royall, J.T.W. Wang, M.A. Alhnan, A novel natural GRAS-grade enteric coating for pharmaceutical and nutraceutical products. Int. J. Pharmaceut. 584, 119392 (2020)

    Article  Google Scholar 

  10. V. Verma, K.M. Ryan, L. Padrela, Production and isolation of pharmaceutical drug nanoparticles. Int. J. Pharmaceut. 603, 120708 (2021)

    Article  Google Scholar 

  11. Z. Zhao, D. Poulikakos, J. Fukai, Heat transfer and fluid dynamics during the collision of a liquid droplet on a substrate—I modeling. Int. J. Heat Mass Transf. 39(13), 2771–2789 (1996)

    Article  MATH  Google Scholar 

  12. Y. Ge, L.S. Fan, Droplet-particle collision mechanics with film-boiling evaporation. J. Fluid Mech. 573, 311–337 (2007)

    Article  ADS  MATH  Google Scholar 

  13. A.G. Islamova, S.A. Kerimbekova, N.E. Shlegel, P.A. Strizhak, Droplet-droplet, droplet-particle, and droplet-substrate collision behavior. Powder Technol. 403, 117371 (2022)

    Article  Google Scholar 

  14. X. Liu, X. Zhang, J.C. Min, Maximum spreading of droplets impacting spherical surfaces, Phys. Fluids 31(9) (2019)

  15. X. Liu, X. Zhang, J.C. Min, Droplet rebound and dripping during impact on small superhydrophobic spheres, Phys Fluids, 34(3) (2022).

  16. A. Bordbar, A. Taassob, D. Khojasteh, M. Marengo, R. Kamali, Maximum spreading and rebound of a droplet impacting onto a spherical surface at low weber numbers. Langmuir 34(17), 5149–5158 (2018)

    Article  Google Scholar 

  17. S.A. Banitabaei, A. Amirfazli, Droplet impact onto a solid sphere: Effect of wettability and impact velocity, Phys. Fluids 29(6) (2017)

  18. S. Bakshi, I.V. Roisman, C. Tropea, Investigations on the impact of a drop onto a small spherical target, Phys. Fluids 19(3) (2007)

  19. G.T. Liang, Y.L. Guo, X.S. Mu, S.Q. Shen, Experimental investigation of a drop impacting on wetted spheres. Exp. Therm. Fluid Sci. 55, 150–157 (2014)

    Article  Google Scholar 

  20. H.N. Dalgamoni, X. Yong, Numerical and theoretical modeling of droplet impact on spherical surfaces, Phys. Fluids 33(5) (2021)

  21. M.J. Sayyari, S.F. Kharmiani, J.A. Esfahani, A lattice Boltzmann study on dripping process during 2D droplet impact onto a wetted rotating cylinder. J. Mol. Liq. 275, 409–420 (2019)

    Article  Google Scholar 

  22. D. Khojasteh, N.M. Kazerooni, M. Marengo, A review of liquid droplet impacting onto solid spherical particles: a physical pathway to encapsulation mechanisms. J. Ind. Eng. Chem. 71, 50–64 (2019)

    Article  Google Scholar 

  23. V.V. Dubrovsky, A.M. Podvysotsky, A.A. Shraiber, Particle interaction in three-phase polydisperse flows. Int. J. Multiph. Flow 18(3), 337–352 (1992)

    Article  MATH  Google Scholar 

  24. S.K. Pawar, F. Henrikson, G. Finotello, J.T. Padding, N.G. Deen, A. Jongsma, F. Innings, J.A.M.H. Kuipers, An experimental study of droplet-particle collisions. Powder Technol. 300, 157–163 (2016)

    Article  Google Scholar 

  25. L. Pasternak, M.J.M. Manas, M. Sommerfeld, Influence of droplet properties on the coating of free-falling spherical particles. At. Sprays 31(2), 37–61 (2021)

    Article  Google Scholar 

  26. P.P. Tkachenko, N.E. Shlegel, P.A. Strizhak, Experimental research of liquid droplets colliding with solid particles in a gaseous medium. Chem. Eng. Res. Des. 177, 200–209 (2022)

    Article  Google Scholar 

  27. N.G. Deen, M.V. Annaland, J.A.M. Kuipers, Direct numerical simulation of complex multi-fluid flows using a combined front tracking and immersed boundary method. Chem. Eng. Sci. 64(9), 2186–2201 (2009)

    Article  Google Scholar 

  28. G.Q. Wu, S. Chen, Simulating the collision of a moving droplet against a moving particle: Impact of Bond number, wettability, size ratio, and eccentricity, Phys. Fluids 33(9) (2021)

  29. G.Q. Wu, S. Chen, Comparison of droplet-particle interaction on a stationary and a moving particle. Chem. Eng. Sci. 253, 117552 (2022)

    Article  Google Scholar 

  30. G.Q. Wu, S. Chen, W.H. Du, S. Zhai, S.B. Zeng, Y. Yu, W.G. Zhou, Simulation on a three-dimensional collision of a moving droplet against a moving super-hydrophobic particle. Powder Technol. 405, 117558 (2022)

    Article  Google Scholar 

  31. G.Q. Wu, S. Chen, Simulating spray coating processes by a three-dimensional lattice Boltzmann method-immersed boundary method approach. Chem. Eng. Sci. 263, 118091 (2022)

    Article  Google Scholar 

  32. C. Chung, M. Lee, K. Char, K.H. Ahn, S.J. Lee, Droplet dynamics passing through obstructions in confined microchannel flow. Microfluid. Nanofluid. 9(6), 1151–1163 (2010)

    Article  Google Scholar 

  33. Q. Li, Z. Chai, B. Shi, H. Liang, Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study. Phys. Rev. E 90(4), 043015 (2014)

    Article  ADS  Google Scholar 

  34. C.Y. Zhang, H. Zhang, Y.G. Zhao, C. Yang, An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles. Int. J. Heat Mass Transf. 181, 121905 (2021)

    Article  Google Scholar 

  35. S.F. Zhao, A. Riaud, G.S. Luo, Y. Jin, Y. Cheng, Simulation of liquid mixing inside micro-droplets by a lattice Boltzmann method. Chem. Eng. Sci. 131, 118–128 (2015)

    Article  Google Scholar 

  36. M.C. Sukop, D. Or, Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media, Water Resour. Res. 40(1) (2004)

  37. L. Chen, Q.J. Kang, Y.T. Mu, Y.L. He, W.Q. Tao, A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass Transf. 76, 210–236 (2014)

    Article  Google Scholar 

  38. S.K. Kang, Y.A. Hassan, A direct-forcing immersed boundary method for the thermal lattice Boltzmann method. Comput. Fluids 49(1), 36–45 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Z.-G. Feng, E.E. Michaelides, The immersed boundary-lattice Boltzmann method for solving fluid–particles interaction problems. J. Comput. Phys. 195(2), 602–628 (2004)

    Article  ADS  MATH  Google Scholar 

  40. K. Han, Y.T. Feng, D.R.J. Owen, Coupled lattice Boltzmann and discrete element modelling of fluid–particle interaction problems. Comput. Struct. 85(11–14), 1080–1088 (2007)

    Article  Google Scholar 

  41. Z.L. Guo, C.G. Zheng, Analysis of lattice Boltzmann equation for microscale gas flows: relaxation times, boundary conditions and the Knudsen layer. Int. J. Comput. Fluid D 22(7), 465–473 (2008)

    Article  MATH  Google Scholar 

  42. P. Yuan, L. Schaefer, Equations of state in a lattice Boltzmann model, Phys. Fluids 18(4) (2006)

  43. X.Y. He, G.D. Doolen, Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107(1–2), 309–328 (2002)

    Article  MATH  Google Scholar 

  44. R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Mesoscopic modeling of a two-phase flow in the presence of boundaries: the contact angle. Phys. Rev. E 74(2), 021509 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. Tao, Q. He, J.C. Chen, B.M. Chen, G. Yang, Z.B. Wu, A non-iterative immersed boundary-lattice Boltzmann method with boundary condition enforced for fluid-solid flows. Appl. Math. Model 76, 362–379 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. H.R. Liu, H. Ding, A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates. J. Comput. Phys. 294, 484–502 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. W.W. Ren, C. Shu, J. Wu, W.M. Yang, Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications. Comput. Fluids 57, 40–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Yang, S. Chen, Simulation of interaction between a freely moving solid particle and a freely moving liquid droplet by lattice Boltzmann method. Int. J. Heat Mass Transf. 127, 474–484 (2018)

    Article  Google Scholar 

  49. S. Mitra, G.M. Evans, E. Doroodchi, V. Pareek, J.B. Joshi, Interactions in droplet and particle system of near unity size ratio. Chem. Eng. Sci. 170, 154–175 (2017)

    Article  Google Scholar 

  50. V. Mehdi-Nejad, J. Mostaghimi, S. Chandra, Air bubble entrapment under an impacting droplet. Phys. Fluids 15(1), 173–183 (2003)

    Article  ADS  MATH  Google Scholar 

  51. N. Li, Y.Q. Zhao, Q. Pan, S.G. Kong, Demosaicking DoFP images using Newton’s polynomial interpolation and polarization difference model. Opt. Express 27(2), 1376–1391 (2019)

    Article  ADS  Google Scholar 

  52. J. Wang, O.M. Faltinsen, C. Lugni, Unsteady hydrodynamic forces of solid objects vertically entering the water surface, Phys. Fluids 31(2) (2019)

  53. J.P. Wang, E. Gallo, B. Francois, F. Gabrieli, P. Lambert, Capillary force and rupture of funicular liquid bridges between three spherical bodies. Powder Technol 305, 89–98 (2017)

    Article  Google Scholar 

  54. S.M. You, M.P. Wan, Mathematical Models for the van der Waals force and capillary force between a rough particle and surface. Langmuir 29(29), 9104–9117 (2013)

    Article  Google Scholar 

  55. I. Malgarinos, N. Nikolopoulos, M. Gavaises, A numerical study on droplet-particle collision dynamics. Int. J. Heat Fluid Flow 61, 499–509 (2016)

    Article  Google Scholar 

  56. H. Tavana, F. Simon, K. Grundke, D.Y. Kwok, M.L. Hair, A.W. Neumann, Interpretation of contact angle measurements on two different fluoropolymers for the determination of solid surface tension. J. Colloid Interface Sci. 291(2), 497–506 (2005)

    Article  ADS  Google Scholar 

  57. M. Jamali, A. Rostamijavanani, N.M. Nouri, M. Navidbakhsh, An experimental study of cavity and Worthington jet formations caused by a falling sphere into an oil film on water. Appl. Ocean Res. 102, 102319 (2020)

    Article  Google Scholar 

  58. G.Q. Wu, S. Chen, W.H. Du, S.B. Zeng, Y. Yu, S. Zhai, Y. Wang, On the collision of a droplet with a V-shaped wall. Int. Commun. Heat Mass 137, 106269 (2022)

    Article  Google Scholar 

  59. K. Petschel, S. Stellmach, M. Wilczek, J. Lulff, U. Hansen, Kinetic energy transport in Rayleigh-Benard convection. J. Fluid Mech. 773, 395–417 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Chen.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Chen, S. Direct numerical simulation of a moving droplet impacting a moving particle: effects of particle–droplet density ratio, Bond number, and Reynolds number. Eur. Phys. J. Plus 138, 723 (2023). https://doi.org/10.1140/epjp/s13360-023-04354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04354-x

Navigation