Skip to main content
Log in

On the complexity of the positron’s dynamics in a short carbon nanotube: a full explanation of the rainbow effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper contains the results of the classical, uniform semiclassical, and quantum mechanical study of the channeling of 1 MeV positrons in a short (11, 9) chiral carbon nanotube. In the classical part of the study, we have analyzed the positron trajectories, which reveal the existence of the primary, secondary, and higher-order rainbow lines. The semiclassical part of the study has been performed with the incident positron represented as a plane wave, while in the fully quantum approach, by a wide Gaussian wave packet. In the former case, only the primary rainbow exists; in the latter, the higher-order rainbows also appear. The evolution of the semiclassical spatial distribution of channeled positrons reveals that rainbow and dislocation points are organized in lines. These points and lines are recognized in the evolution of the quantum spatial distribution of channeled positrons. In the quantum party of the study, special attention has been paid to the Bohm positron trajectories and their finite-time Lyapunov exponents. We demonstrate that the classical, semiclassical, and quantum rainbow effects are complex and catastrophic. These results explain entirely the rainbow effect in the positron transmission through the nanotube.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author, M. Ć., upon reasonable request.]

References

  1. M. M. Waldrop, Complexity, The Emerging Science at the Edge of Order and Chaos, (Simon and Schuster, New York 1992).

  2. S. Reicher, The Psychology of Crowd Dynamics in M. A. Hogg and R. S. Tindale, ed., Blackwell Handbook of Social Psychology: Group Processes, (Wiley-Blackwell Publishers Ltd., New Jersey 2001)

  3. E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, 2002)

    Book  MATH  Google Scholar 

  4. S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theoret. Biol. 22, 437 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  5. D. Bassett, O. Sporns, Network neuroscience. Nat. Neurosci. 20, 353 (2017)

    Article  Google Scholar 

  6. D.P. Bertsekas, R.G. Gallagher, Data Networks (Prentice-Hall, INC., New Jersey, 1986)

    Google Scholar 

  7. B. Mandelbrot, The Fractal Geometry of Nature, (W. H. Freeman and Co., 1982)

  8. P. Alberto, V. Jacques, Physics of Crystal Growth (Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  9. H. Richard and H. Gomes, Holism and Nonseparability in Physics, in: The Stanford Encyclopedia of Philosophy (Spring 2022 Edition); url: https://plato.stanford.edu/archives/spr2022/entries/physics-holism.

  10. M. Gell-Mann, What is complexity? Remarks on simplicity and complexity by the Nobel Prize-winning author of The Quark and the Jaguar. Complexity 1, 16 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Gell-Mann, S. Lloyd, Effective Complexity, Santa Fe Institute, 03-12-068, 387 (2003)

  12. S. Petrović, D. Borka, N. Nešković, Rainbows in transmission of high energy protons through carbon nanotubes. Eur. Phys. J. B 44, 41 (2005)

    Article  ADS  Google Scholar 

  13. S. Petrović, M. Ćosić, N. Nešković, Quantum rainbow channeling of positrons in very short carbon nanotubes. Phys. Rev. A 88, 012902 (2013)

    Article  ADS  Google Scholar 

  14. M. Ćosić, S. Petrović, N. Nešković, Quantum rainbow characterization of short chiral carbon nanotubes. Nucl. Instrum. Meth. Phys. Res. B 323, 30 (2014)

    Article  ADS  Google Scholar 

  15. M. Ćosić, S. Petrović, N. Nešković, Quantum primary rainbows in the transmission of positrons through very short carbon nanotubes. Nucl. Instrum. Meth. Phys. Res. B 373, 52 (2016)

    Article  ADS  Google Scholar 

  16. D. Borka, S. Petrović, N. Nešković, Channeling of Protons through Carbon Nanotubes (Nova Science Publishers, New York, 2011)

    MATH  Google Scholar 

  17. N. Nešković, S. Petrović, M. Ćosić, Rainbows in Channeling of Charged Particles in Crystals and Nanotubes (Springer, Cham, 2017)

    Book  Google Scholar 

  18. M. Ćosić, N. Nešković, A dynamical study of positron channeling in a carbon nanotube, in: M. C. Wythers, ed., Advances in Materials Science Research, Vol. 47 (Nova Science Publishers, New York, 2021).

  19. M.V. Berry, Quantum chaology. Proc. R. Soc. A 413, 183 (1987)

    ADS  Google Scholar 

  20. M.V. Berry, M. Tabor, Level clustering in the regular spectrum. Proc. R. Soc. A 356, 375 (1977)

    ADS  MATH  Google Scholar 

  21. S. Heusler, S. Müller, A. Altland, P. Braun, F. Haake, Periodic-orbit theory of level correlations. Phys. Rev. Lett. 98, 044103 (2007)

    Article  ADS  Google Scholar 

  22. E.J. Heller, Bound-state eigenfunctions of classically chaotic hamiltonian systems: scars of periodic orbits. Phys. Rev. Lett. 53, 16 (1984)

    Article  MathSciNet  Google Scholar 

  23. M.V. Berry, N.L. Balazs, M. Tabor, A. Voros, Quantum maps. Ann. Phys N. Y. 122, 26 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 2001)

    MATH  Google Scholar 

  25. X. Artru, S.P. Fomin, N.F. Shul’g, K.A. Ispirianc, N.K. Zhevago, Carbon nanotubes and fullerites in high-energy and X-ray physics. Phys. Rep. 412, 89 (2005)

    Article  ADS  Google Scholar 

  26. D.S. Gemmell, Channeling and related effects in the motion of charged particles through crystals. Rev. Mod. Phys. 46, 129 (1974)

    Article  ADS  Google Scholar 

  27. S. Petrović, N. Nešković, M. Ćosić, M. Motapothula, M.B.H. Breese, Proton–silicon interaction potential extracted from high-resolution measurements of crystal rainbows. Nucl. Instrum. Methods. Phys. Res. B 360, 23–29 (2015)

    Article  ADS  Google Scholar 

  28. M. Motapothula, S. Petrović, N. Nešković, M.B.H. Breese, Experimental evidence of the superfocusing effect for axially channeled MeV protons. Phys. Rev. B 94, 075415 (2016)

    Article  ADS  Google Scholar 

  29. Y. Takabayashi, Yu.L. Pivovarova, T.A. Tukhfatullin, First observation of scattering of sub-GeV electrons in ultrathin Si crystal at planar alignment and its relevance to crystal-assisted 1D rainbow scattering. Phys. Lett. B 785, 347 (2018)

    Article  ADS  Google Scholar 

  30. R.A. Wilhelm, P.L. Grande, Unraveling energy loss processes of low energy heavy ions in 2D materials. Commun. Phys. 2, 89 (2019)

    Article  Google Scholar 

  31. M. Ćosić, S. Petrović, Y. Takabayashi, Classical patterns in the quantum rainbow channeling of high energy electrons. Phys. Rev. A 103, 022818 (2021)

    Article  ADS  Google Scholar 

  32. B.R. Appleton, C. Erginsoy, H.E. Wegner, W.M. Gibson, Channeling effects in the energy loss of 3–11 MeV protons in silicon and germanium single crystals. Phys. Rev. 161, 330 (1967)

    Article  ADS  Google Scholar 

  33. J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, J.E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes. Science 289, 1730 (2000)

    Article  ADS  Google Scholar 

  34. J. Lindhard, Influence of crystal lattice on motion of energetic charged particles Mat. Fys. Medd. Dan. Vid. Selsk. 34, 14 (1965)

    Google Scholar 

  35. R.M. Sternheimer, Density effect for the ionization loss of charged particles. Phys. Rev. 145, 1 (1966)

    Article  Google Scholar 

  36. P. Hautojarvi and A. Vehanen, Introduction to Positron Annihilation, in: Positrons in Solids, edited by. P. Hautojarvi (Springer-Verlag 1979)

  37. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in FORTRAN 77: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1993)

    MATH  Google Scholar 

  38. C. Lehman, G. Leibfried, Higher order momentum approximation in classical collision theory. Z. Phys. A: Hadrons Nucl. 172, 465 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  39. J.W. Bruce, P.J. Giblin, Curves and Singularities (Cambridge University Press, Cambridge, 1984)

    MATH  Google Scholar 

  40. M. Ćosić, N. Nešković, S. Petrović, Superfocusing and zero-degree focusing in planar channeling of protons in a thin silicon crystal. Nucl. Instrum. Meth. Phys. Res. B 444, 10 (2019)

    Article  ADS  Google Scholar 

  41. R. Thom, Structural Stability and Morphogenesis (Benjamin, Reading, 1975).

  42. M.V. Berry, K.E. Mount, Semiclassical approximations in wave mechanics. Rep. Prog. Phys. 35, 315 (1972)

    Article  ADS  Google Scholar 

  43. T. Pearcey, XXXI. The structure of an electromagnetic field in the neighborhood of a cusp of a caustic. Lond. Edinb. Dubl. Phil. Mag. 37, 311 (1946)

    MathSciNet  Google Scholar 

  44. N.P. Kirk, J.N.L. Connor, C.A. Hobbs, An adaptive contour code for the numerical evaluation of the oscillatory cuspoid canonical integrals and their derivatives. Comput. Phys. Commun. 132, 142 (2000)

    Article  ADS  MATH  Google Scholar 

  45. M. Ćosić, S. Petrović, N. Nešković, Quantum rainbows in positron transmission through carbon nanotubes. Atoms 7, 16 (2019)

    Article  ADS  Google Scholar 

  46. M. Ćosić, S. Petrović, N. Nešković, Computational method for the long time propagation of quantum channeled particles in crystals and carbon nanotubes. Nucl. Instrum. Meth. Phys. Res. B 330, 33 (2014)

    Article  ADS  Google Scholar 

  47. S.H. Strogatz, R.M. Westervelt, Predicted power laws for delayed switching of charge-density waves. Phys. Rev. B 40, 10501 (1989)

    Article  ADS  Google Scholar 

  48. D. Bohm, D.B.J. Hiley, The Undivided Universe: An Ontological Interpretation of Quantum Theory (Routledge, London, 1995)

    MATH  Google Scholar 

  49. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them, Part 1: Theory. Meccanica 15, 9 (1980)

    Article  ADS  MATH  Google Scholar 

  50. G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method for computing all of them, Part 2: Numerical application. Meccanica 15, 21 (1980)

    Article  MATH  Google Scholar 

  51. G.A. Leonov, N.V. Kuznetsov, Time-varying linearization and the Perron effects. Int. J. Bifurcat. Chaos 17, 1079 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M. Ć wants to express his gratitude toward Nebojša Nešković professor emeritus, for fruitful discussions and valuable comments on the draft version of the manuscript. The research presented in this paper was funded by the Ministry of Science, Technological Development and Innovation of Serbia grant No. 451-03-47/2023-01/200017.

Author information

Authors and Affiliations

Authors

Contributions

M.Ć. performed all theoretical calculations, analyzed the obtained data, and wrote the manuscript.

Corresponding author

Correspondence to M. Ćosić.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ćosić, M. On the complexity of the positron’s dynamics in a short carbon nanotube: a full explanation of the rainbow effect. Eur. Phys. J. Plus 138, 464 (2023). https://doi.org/10.1140/epjp/s13360-023-04107-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04107-w

Navigation