Skip to main content
Log in

Tunable electronic properties of AlAs/InP heterostructure via external electric field and uniaxial strain

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, first-principles calculations based on the density functional theory are used to systematically discuss the geometry structures and optoelectronic properties of the AlAs/InP van der Waals heterostructure (vdWH). According to our results, the AlAs/InP heterostructure is a sort of direct band gap semiconductor whose immanent type-II band arrangement can effectively prevent the recombination of photogenerated electron and hole pairs. Due to charge transfer and interlayer coupling, the optical absorption range and capability of the AlAs/InP heterostructure are significantly superior to AlAs and InP monolayers. In addition, the external electric field and uniaxial strain can effectively modify the band structure of the AlAs/InP heterostructure, arising semiconductor-to-metal and direct-gap to indirect-gap transitions. The above results illustrate that the AlAs/InP heterostructure possesses potential applications in nanoelectronic and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are not publicly available due (to privacy or other restrictions) but are available from the corresponding author on reasonable request].

References

  1. D.H. Shin, S.H. Choi, Micromach. (Basel) 9, 350–378 (2018)

    Article  Google Scholar 

  2. W. Xia, L. Dai, P. Yu, X. Tong, W. Song, G. Zhang, Z. Wang, Nanoscale 9, 4324–4365 (2017)

    Article  Google Scholar 

  3. M. Huang, Y. Zhou, Y. Guo, H. Wang, X. Hu, X. Xu, Z. Ren, J. Mater. Sci. 53, 7744–7754 (2018)

    Article  ADS  Google Scholar 

  4. W. Feng, W. Zheng, X. Chen, G. Liu, W. Cao, P. Hu, Chem. Mater. 27, 983–989 (2015)

    Article  Google Scholar 

  5. J. Cheng, C. Wang, X. Zou, L. Liao, Adv. Opt. Mater. 7, 1800441–1800455 (2019)

    Article  Google Scholar 

  6. Y. Yan, Z. Zeng, M. Huang, P. Chen, Mater. Today Adv. 6, 100059–100069 (2020)

    Article  Google Scholar 

  7. A. Bablich, S. Kataria, M. Lemme, Electronics 5, 13–28 (2016)

    Article  Google Scholar 

  8. Z. Sun, H. Chang, ACS Nano 8, 4133–4156 (2014)

    Article  Google Scholar 

  9. K. Momeni, Y. Ji, Y. Wang, S. Paul, S. Neshani, D.E. Yilmaz, Y.K. Shin, D. Zhang, J.-W. Jiang, H.S. Park, S. Sinnott, A. van Duin, V. Crespi, L.-Q. Chen, NPJ Comput. Mater. 6, 22 (2020)

    Article  ADS  Google Scholar 

  10. A.J. Pollard, Meas. Sci. Technol. 27, 092001–092013 (2016)

    Article  ADS  Google Scholar 

  11. S. Wang, Y. Hu, Y. Wei, W. Li, N.T. Kaner, Y. Jiang, J. Yang, X. Li, Phys. E 130, 114674–114679 (2021)

    Article  Google Scholar 

  12. J.A. Olmos-Asar, C.R. Leão, A. Fazzio, RSC Adv. 7, 32383–32390 (2017)

    Article  ADS  Google Scholar 

  13. S. Yin, Q. Luo, D. Wei, G. Guo, X. Sun, Y. Tang, X. Dai, Results Phys. 33, 105172–105179 (2022)

    Article  Google Scholar 

  14. J. Zhao, H. Zeng, Adv. Mater. Interfaces 8, 2001555–2001566 (2021)

    Article  Google Scholar 

  15. X. Li, M.-W. Lin, A.A. Puretzky, L. Basile, K. Wang, J.C. Idrobo, C.M. Rouleau, D.B. Geohegan, K. Xiao, J. Mater. Res. 31, 923–930 (2016)

    Article  ADS  Google Scholar 

  16. W. Hu, J. Yang, J. Mater. Chem. C 5, 12289–12297 (2017)

    Article  Google Scholar 

  17. L. Wang, X. Zhou, T. Ma, D. Liu, L. Gao, X. Li, J. Zhang, Y. Hu, H. Wang, Y. Dai, J. Luo, Nanoscale 9, 10846–10853 (2017)

    Article  Google Scholar 

  18. L. Meng, Q. Huang, C. Liu, H. Li, W. Yan, Q. Zhao, X. Yan, Chem. Phys. Lett. 781, 138989–138994 (2021)

    Article  Google Scholar 

  19. Z. Xu, Y. Li, Z. Liu, Mater. Des. 108, 333–342 (2016)

    Article  Google Scholar 

  20. K. Ren, Y. Luo, J. Yu, W. Tang, Chem. Phys. 528, 110545 (2020)

    Article  Google Scholar 

  21. K. Si, J. Ma, C. Lu, Y. Zhou, C. He, D. Yang, X. Wang, X. Xu, Appl. Surf. Sci. 507, 145082–145112 (2020)

    Article  Google Scholar 

  22. F. Yao, M. Yang, Y. Chen, X. Zhou, L. Wang, Chem. Phys. Lett. 765, 138194–138206 (2021)

    Article  Google Scholar 

  23. Y. Jia, X. Wei, Z. Zhang, J. Liu, Y. Tian, Y. Zhang, T. Guo, J. Fan, L. Ni, L. Luan, L. Duan, CrystEngComm 23, 1033–1042 (2021)

    Article  Google Scholar 

  24. V.E. Nikiforov, D.S. Abramkin, T.S. Shamirzaev, Semiconductors 51, 1513–1516 (2017)

    Article  ADS  Google Scholar 

  25. A.A. Ryzhov, Appl. Opt. 56, 5811–5816 (2017)

    Article  ADS  Google Scholar 

  26. F. Yao, X. Zhou, A. Xiong, Appl. Phys. A 126, 501–510 (2020)

    Article  ADS  Google Scholar 

  27. C. Tan, Q. Yang, R. Meng, Q. Liang, J. Jiang, X. Sun, H. Ye, X.P. Chen, J. Mater. Chem. C 4, 8171–8178 (2016)

    Article  Google Scholar 

  28. L. Chen, X. Zhou, J. Yu, J. Comput. Electron. 18, 749–757 (2019)

    Article  Google Scholar 

  29. P. Wang, X. Li, Z. Xu, Z. Wu, S. Zhang, W. Xu, H. Zhong, H. Chen, E. Li, J. Luo, Q. Yu, S. Lin, Nano Energy 13, 509–517 (2015)

    Article  Google Scholar 

  30. D.R. Lambada, S. Yang, Y. Wang, P. Ji, S. Shafique, F. Wang, Nanomanuf. Metrol. 3, 269–281 (2020)

    Article  Google Scholar 

  31. S. Lin, P. Wang, X. Li, Z. Wu, Z. Xu, S. Zhang, W. Xu, Appl. Phys. Lett. 107, 153904–153908 (2015)

    Article  ADS  Google Scholar 

  32. X. Lu, L. Li, X. Guo, J. Ren, H. Xue, F. Tang, Comput. Mater. Sci. 198, 110677–110686 (2021)

    Article  Google Scholar 

  33. G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169–11186 (1996)

    Article  ADS  Google Scholar 

  34. J. Hafner, J. Comput. Chem. 29, 2044–2078 (2008)

    Article  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  36. P.E. Blochl, Phys. Rev. B Condens. Matter 50, 17953–17979 (1994)

    Article  ADS  Google Scholar 

  37. J. Heyd, G.E. Scuseria, J. Chem. Phys. 118, 8207–8215 (2003)

    Article  ADS  Google Scholar 

  38. S. Grimme, J. Comput. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  39. A. Togo, I. Tanaka, Scripta Mater. 108, 1–5 (2015)

    Article  ADS  Google Scholar 

  40. Y. Lv, Q. Tong, Y. Liu, L. Li, S. Chang, W. Zhu, C. Jiang, L. Liao, Phys. Rev. Appl. 12, 044064–044072 (2019)

    Article  ADS  Google Scholar 

  41. Y. Mao, C. Xu, J. Yuan, H. Zhao, J. Mater. Chem. A 7, 11265–11271 (2019)

    Article  Google Scholar 

  42. X. Sun, C. Zhu, X. Zhu, J. Yi, Y. Liu, D. Li, A. Pan, Adv. Electron. Mater. 7, 2001174–2001193 (2021)

    Article  Google Scholar 

  43. H.Y. Ye, F.F. Hu, H.Y. Tang, L.W. Yang, X.P. Chen, L.G. Wang, G.Q. Zhang, Phys. Chem. Chem. Phys. 20, 16067–16076 (2018)

    Article  Google Scholar 

  44. J. Chen, X. He, B. Sa, J. Zhou, C. Xu, C. Wen, Z. Sun, Nanoscale 11, 6431–6444 (2019)

    Article  Google Scholar 

  45. H.R. Jappor, M.A. Habeeb, Curr. Appl. Phys. 18, 673–680 (2018)

    Article  ADS  Google Scholar 

  46. L. Huang, J. Li, Appl. Phys. Lett. 108, 083101–083105 (2016)

    Article  ADS  Google Scholar 

  47. Y. Ma, X. Zhao, T. Wang, W. Li, X. Wang, S. Chang, Y. Li, M. Zhao, X. Dai, Phys. Chem. Chem. Phys. 18, 28466–28473 (2016)

    Article  Google Scholar 

  48. K. Ren, M. Sun, Y. Luo, S. Wang, Y. Xu, J. Yu, W. Tang, Phys. Lett. A 383, 1487–1492 (2019)

    Article  ADS  Google Scholar 

  49. R. Zhang, Y. Zhang, X. Wei, T. Guo, Y.F. Jia, L. Ni, Y. Weng, Z. Zha, J. Liu, Y. Tian, T. Li, L. Duan, Appl. Surf. Sci. 528, 146782–146789 (2020)

    Article  Google Scholar 

  50. Z. Wang, F. Sun, J. Liu, Y. Tian, Z. Zhang, Y. Zhang, X. Wei, T. Guo, J. Fan, L. Ni, L. Duan, Phys. Chem. Chem. Phys. 22, 20712–20720 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1600200), the Major Project of International Scientific and Technological Cooperation Plan in Shaanxi (2020KWZ-008), the Natural Science Foundation of Shaanxi Province (2021GY-255) and the Fundamental Research Funds for the Central Universities CHD (300102312401).

Author information

Authors and Affiliations

Authors

Contributions

JZ helped in writing—original draft. LL worked in software. CY helped in methodology. JC helped in formal analysis. YZ helped in conceptualization. XW worked in supervision. JF worked in project administration. LN helped in funding acquisition. CL and YY helped in data curation. JL helped in validation. YT worked in resources. LD helped in writing—review and editing.

Corresponding author

Correspondence to Li Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have affected the work reported herein.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Luan, L., Yuan, C. et al. Tunable electronic properties of AlAs/InP heterostructure via external electric field and uniaxial strain. Eur. Phys. J. Plus 138, 488 (2023). https://doi.org/10.1140/epjp/s13360-023-04106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04106-x

Navigation