Skip to main content
Log in

Effect of small-amplitude gravity modulation on the stability of Rayleigh–Bénard convection in nanofluids

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Predicting the criteria for a convective flow to set up in a bottom heated fluid layer, due to density variations and the action of gravity, is essential in several physical phenomena, such as the cooling of electronic equipment and nuclear reactor design. The present article investigates the onset of convection in a nanofluid layer heated from below when the layer is subjected to a periodically modulated gravitational field of small amplitude. We assume that the layer is top-heavy, so the preferred convection mode is stationary. Our focus is on the shift in the critical Rayleigh number for constant gravitational field conditions, which is assumed to be of order square of the modulation amplitude. This shift in the Rayleigh number is obtained through a linear stability analysis of the governing system of equations. The stability criteria are obtained for three different sets of velocity boundary conditions. The effect of various parameters on the system’s stability under the modulated gravitational field is reported. The results reveal that gravity modulation significantly influences the onset of convection as through proper tuning of modulation frequency, one can further destabilize or even stabilize an unstable basic state resulting from the bottom-heating of the top-heavy layer. A comment on the inclusion of the Brownian motion effect in natural convection problems is made based on current findings and some existing studies indicating the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

All data generated or analysed during this study are included in this published article.

References

  1. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. (no. anl/msd/cp-84938; conf-951135-29), Argonne National Lab.(ANL), Argonne, IL (United States)

  2. J.A. Eastman, U. Choi, S. Li, L. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids

  3. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6), 718–720 (2001)

    Article  ADS  Google Scholar 

  4. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transf. 125(4), 567–574 (2003)

    Article  Google Scholar 

  5. J.J. Vadasz, S. Govender, P. Vadasz, Heat transfer enhancement in nano-fluids suspensions: possible mechanisms and explanations. Int. J. Heat Mass Transf. 48(13), 2673–2683 (2005)

    Article  Google Scholar 

  6. J. Buongiorno, Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  7. D.Y. Tzou, Instability of nanofluids in natural convection. J. Heat Transf. 130(7), 2967–2979 (2008)

    Article  MATH  Google Scholar 

  8. D.Y. Tzou, Thermal instability of nanofluids in natural convection. Int. J. Heat Mass Transf. 51(11–12), 2967–2979 (2008)

    Article  MATH  Google Scholar 

  9. D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid. Int. J. Heat Mass Transf. 52(25–26), 5796–5801 (2009)

    Article  MATH  Google Scholar 

  10. D.A. Nield, A.V. Kuznetsov, The onset of convection in a horizontal nanofluid layer of finite depth. Eur. J. Mech. B Fluids 29(3), 217–223 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. D.A. Nield, A.V. Kuznetsov, The onset of double-diffusive convection in a nanofluid layer. Int. J. Heat Fluid Flow 32(4), 771–776 (2011)

    Article  Google Scholar 

  12. A.V. Kuznetsov, D.A. Nield, Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model. Transp. Porous Media 81(3), 409–422 (2010)

    Article  MathSciNet  Google Scholar 

  13. D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int. J. Heat Mass Transf. 68, 211–214 (2014)

    Article  Google Scholar 

  14. S. Agarwal, B.S. Bhadauria, P.G. Siddheshwar, Thermal instability of a nanofluid saturating a rotating anisotropic porous medium. Spec. Top. Rev. Porous Med. Int. J 2(1), 53–64 (2011)

    Article  Google Scholar 

  15. B.S. Bhadauria, S. Agarwal, A. Kumar, Nonlinear two-dimensional convection in a nanofluid saturated porous medium. Transp. Porous Media 90(2), 605 (2011)

    Article  MathSciNet  Google Scholar 

  16. B.S. Bhadauria, S. Agarwal, Convective transport in a nanofluid saturated porous layer with thermal non equilibrium model. Transp. Porous Media 88(1), 107–131 (2011)

    Article  MathSciNet  Google Scholar 

  17. S. Agarwal, Natural convection in a nanofluid-saturated rotating porous layer: a more realistic approach. Transp. Porous Media 104(3), 581–592 (2014)

    Article  MathSciNet  Google Scholar 

  18. S. Agarwal, B.S. Bhadauria, Unsteady heat and mass transfer in a rotating nanofluid layer. Contin. Mech. Thermodyn. 26(4), 437–445 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. S. Agarwal, P. Rana, Convective transport in a binary nanofluid saturated porous layer: a nonlinear approach. J. Comput. Theor. Nanosci. 12(10), 3130–3147 (2015)

    Article  Google Scholar 

  20. P.G. Siddheshwar, C. Kanchana, Y. Kakimoto, A. Nakayama, Steady finite-amplitude Rayleigh–Bénard convection in nanoliquids using a two-phase model: theoretical answer to the phenomenon of enhanced heat transfer. J. Heat Transf. 139(1), 012402 (2017)

    Article  Google Scholar 

  21. K.M. Lakshmi, P.G. Siddheshwar, F. Ismail, D. Laroze, Linear and weakly non-linear stability analyses of Rayleigh–Bénard convection in a water-saturated porous medium with different shapes of copper nanoparticles. Eur. Phys. J. Plus 137(6), 1–18 (2022)

    Article  Google Scholar 

  22. X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)

    Article  Google Scholar 

  23. Z. Haddad, H.F. Oztop, E. Abu-Nada, A. Mataoui, A review on natural convective heat transfer of nanofluids. Renew. Sustain. Energy Rev. 16(7), 5363–5378 (2012)

    Article  Google Scholar 

  24. N.A. Sheikh, D.L.C. Ching, I. Khan, A comprehensive review on theoretical aspects of nanofluids: exact solutions and analysis. Symmetry 12(5), 725 (2020)

    Article  ADS  Google Scholar 

  25. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover Publications, New York, 2013)

    MATH  Google Scholar 

  26. A.V. Getling, Rayleigh–Bénard Convection: Structures and Dynamics, vol. 11 (World Scientific, Singapore, 1998)

    Book  MATH  Google Scholar 

  27. G. McKay, Patterned ground formation and solar radiation ground heating. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 438(1903), 249–263 (1992)

    ADS  MATH  Google Scholar 

  28. G. Venezian, Effect of modulation on the onset of thermal convection. J. Fluid Mech. 35(2), 243–254 (1969)

    Article  ADS  MATH  Google Scholar 

  29. G. Ahlers, P.C. Hohenberg, M. Lücke, Externally modulated Rayleigh–Bénard convection: experiment and theory. Phys. Rev. Lett. 53(1), 48 (1984)

    Article  ADS  Google Scholar 

  30. B.S. Bhadauria, P.K. Bhatia, Time-periodic heating of Rayleigh–Bénard convection. Phys. Scr. 66(1), 59 (2002)

    Article  ADS  MATH  Google Scholar 

  31. J. Singh, R. Bajaj, Temperature modulation in Rayleigh–Bénard convection. ANZIAM J. 50(2), 231–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. O.P. Suthar, P.G. Siddheshwar, B.S. Bhadauria, A study on the onset of thermally modulated Darcy–Bénard convection. J. Eng. Math. 101(1), 175–188 (2016)

    Article  MATH  Google Scholar 

  33. A. Bansal, O.P. Suthar, A study on the effect of temperature modulation on Darcy–Bénard convection using a local thermal non-equilibrium model. Phys. Fluids 34(4), 044107 (2022)

    Article  ADS  Google Scholar 

  34. A. Bansal, O.P. Suthar, Combined effect of temperature modulation and rotation on the onset of Darcy–Bénard convection in a porous layer using the local thermal nonequilibrium model. Transp. Porous Med. 2023, 1–17 (2023)

    Google Scholar 

  35. B.Q. Li, Stability of modulated-gravity-induced thermal convection in magnetic fields. Phys. Rev. E 63(4), 041508 (2001)

    Article  ADS  Google Scholar 

  36. P.A. Kondos, R. Subramanian, Buoyant flow in a two-dimensional cavity due to a sinusoidal gravitational field. Microgravity Sci. Technol. 9(3), 143–151 (1996)

    Google Scholar 

  37. W. Jixiang, L. Yunze, L. Xiangdong, S. Chaoqun, H. Zhang, K. Xiong, Recent active thermal management technologies for the development of energy-optimized aerospace vehicles in China. Chin. J. Aeronaut. 34(2), 1–27 (2021)

    Article  Google Scholar 

  38. H. Yanaoka, R. Inafune, Frequency response of three-dimensional natural convection of nanofluids under microgravity environments with gravity modulation. Numer. Heat Transf. Part A Appl. 2022, 1–25 (2022)

    Google Scholar 

  39. P.M. Gresho, R.L. Sani, The effects of gravity modulation on the stability of a heated fluid layer. J. Fluid Mech. 40(4), 783–806 (1970)

    Article  ADS  MATH  Google Scholar 

  40. G.Z. Gershuni, E.M. Zhukhovitskii, I.S. Iurkov, On convective stability in the presence of periodically varying parameter. J. Appl. Math. Mech. 34(3), 442–452 (1970)

    Article  Google Scholar 

  41. B.V. Saunders, B.T. Murray, G.B. McFadden, S.R. Coriell, A.A. Wheeler, The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid. Phys. Fluids A 4(6), 1176–1189 (1992)

    Article  ADS  MATH  Google Scholar 

  42. S. Govender, Stability of convection in a gravity modulated porous layer heated from below. Transp. Porous Med. 57(1), 113–123 (2004)

    Article  Google Scholar 

  43. R. Bajaj, Thermodiffusive magneto convection in ferrofluids with two-frequency gravity modulation. J. Magn. Magn. Mater. 288, 483–494 (2005)

    Article  ADS  Google Scholar 

  44. M. Malashetty, M. Swamy, Effect of gravity modulation on the onset of thermal convection in rotating fluid and porous layer. Phys. Fluids 23(6), 064108 (2011)

    Article  ADS  MATH  Google Scholar 

  45. O.P. Suthar, B.S. Bhadauria, A. Khan, Effect of g-jitter on the onset of thermosolutal viscoelastic convection in the absence of local thermal equilibrium. Spec. Top. Rev. Porous Med. Int. J. 3(3), 239–246 (2012)

    Article  Google Scholar 

  46. P.G. Siddheshwar, C. Kanchana, Effect of trigonometric sine, square and triangular wave-type time-periodic gravity-aligned oscillations on Rayleigh–Bénard convection in Newtonian liquids and Newtonian nanoliquids. Meccanica 54(3), 451–469 (2019)

    Article  MathSciNet  Google Scholar 

  47. S. Govender, Thermal instability in a nanofluid saturated horizontal porous layer subjected to g-gitter. Int. J. Heat Mass Transf. 110, 63–67 (2017)

    Article  Google Scholar 

  48. S. Saravanan, M. Kousalya, Onset of synchronous and asynchronous convection in modulated nanofluid filled porous media. ZAMM J. Appl. Math. Mech. Zeitschrift für Angewandte Mathematik und Mechanik 101(5), e201900317 (2021)

    MathSciNet  Google Scholar 

  49. S. Saravanan, M. Kousalya, Thermovibrational instability in a nanofluid porous medium. Eur. J. Mech. B Fluids 90, 64–72 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. K. Khanafer, K. Vafai, M. Lightstone, Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46(19), 3639–3653 (2003)

    Article  MATH  Google Scholar 

  51. T.G. Myers, H. Ribera, V. Cregan, Does mathematics contribute to the nanofluid debate? Int. J. Heat Mass Transf. 111, 279–288 (2017)

    Article  Google Scholar 

  52. B.S. Bhadauria, O.P. Suthar, Effect of thermal modulation on the onset of centrifugally driven convection in a rotating vertical porous layer placed far away from the axis of rotation. J. Porous Media 12(3), 239–252 (2009)

    Article  Google Scholar 

  53. O.P. Suthar, B. Bhadauria, A. Khan, Modulated centrifugal convection in a vertical rotating porous layer distant from the axis of rotation. Transp. Porous Media 79(2), 255–264 (2009)

    Article  MathSciNet  Google Scholar 

  54. O.P. Suthar, B. Bhadauria, A. Khan, Rotating brinkman-lapwood convection with modulation. Transp. Porous Media 88(3), 369–383 (2011)

    Article  MathSciNet  Google Scholar 

  55. K. Dev, O.P. Suthar, On the stability of Rayleigh-Bénard convection in a porous medium saturated by a nanofluid. Eur. Phys. J. Plus 137, 1045 (2022)

    Article  Google Scholar 

  56. A.-C. Ruo, W.-M. Yan, M.-H. Chang, The onset of natural convection in a horizontal nanofluid layer heated from below. Heat Transf. 50(8), 7764–7783 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Suthar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, O.P. Effect of small-amplitude gravity modulation on the stability of Rayleigh–Bénard convection in nanofluids. Eur. Phys. J. Plus 138, 298 (2023). https://doi.org/10.1140/epjp/s13360-023-03903-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03903-8

Navigation