Skip to main content

Advertisement

Log in

Theoretical investigation of nonlinear optical properties of Mathieu quantum well

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, for the first time, the effect of externally applied static electric, magnetic, and non-resonant THz intense laser fields on nonlinear optical properties such as the total optical absorption coefficients (TOACs) and relative refractive index changes (RRICs) in a GaAs/AlGaAs Mathieu quantum well are theoretically investigated in detail. Moreover, the influence of the adjustable physical parameters, linked to the potential shape of the structure, on the nonlinear optical properties of the system is also investigated. For this, firstly, the electronic subband energy levels of the Mathieu quantum well, and their envelope wave functions, are calculated using the diagonalization method within the framework of the effective mass and parabolic single-band approximations. Then, the outcome of the iterative solution of compact-density-matrix formalism is used to obtain the nonlinear optical properties of the structure. The obtained numerical results show that the increase in both the structure parameters and the value of the electric and magnetic field shifted the positions of the TOACs and RRICs peaks towards higher energies (blue-shift). On the other hand, the increase in the value of the intense laser field shifted the peak positions to lower energy levels (red-shift). The determination of the functional range for the optical properties of the Mathieu quantum well, using both the structure parameters and the external fields, is an important gain in terms of providing the initial parameters for experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The authors confirm that the data supporting the findings of this study are available within the article].

References

  1. M.K. Gurnick, T.A. De Temple, IEEE J. Quant. Electron. QE. 19, 791 (1983)

    Article  ADS  Google Scholar 

  2. E.F. Schubert, J. Vac, Sci. Technol. A. 8, 2980 (1990)

    Google Scholar 

  3. K. Ploog, M. Hauser, A. Fischer, Appl. Phys. A 45, 233 (1988)

    Article  ADS  Google Scholar 

  4. A.C. Maciel, M. Tatham, J.F. Ryan, J.M. Worlock, R.E. Nahory, J.P. Harbison, L.T. Forlez, Surf. Sci. 228, 251 (1990)

    Article  ADS  Google Scholar 

  5. L. Ioriatti, Phys. Rev. B 41, 8340 (1990)

    Article  ADS  Google Scholar 

  6. J.C. Egues, J.C. Barbosa, A.C. Notari, P. Basmaji, L. Ioriatti, E. Ranz, J. Portal, J. Appl. Phys. 70, 3678 (1991)

    Article  ADS  Google Scholar 

  7. M.H. Degani, Phys. Rev. B 44, 5580 (1991)

    Article  ADS  Google Scholar 

  8. M.H. Degani, J. Appl. Phys. 70, 4362 (1991)

    Article  ADS  Google Scholar 

  9. M.L. Ke, J.S. Rimmer, B. Hamilton, J.H. Evans, M. Missous, K.E. Singer, P. Zalm, Phys. Rev. B 45, 14114 (1992)

    Article  ADS  Google Scholar 

  10. M.L. Ke, J.S. Rimmer, B. Hamilton, M. Missous, B. Khamsehpour, J.H. Evans, K.E. Singer, P. Zalm, Surf. Sci. 267, 65 (1992)

    Article  ADS  Google Scholar 

  11. F. Vigneau, R. Mizokuchi, D. Zanuz, X. Huang, S. Tan, R. Maurand, S. Frolov, A. Sammak, G. Scappucci, F. Leoch, S. De Franceschi, Nano Lett. 19, 1023 (2019)

    Article  ADS  Google Scholar 

  12. C. Canedy, W. Bewley, C. Merritt, C. Kim, M. Kim, M. Warren, E. Jackson, J. Nolde, C. Aouda, E. Aifer, I. Vurgaftman, J. Meyer, Opt. Express. 27, 3771 (2019)

    Article  ADS  Google Scholar 

  13. U. Muhammad, M. Urooj, Z. Dong-Guang, H. Dong-Pyo, R. Muhammad, M. Nazeer, Appl. Sci. 9, 1 (2019)

    Google Scholar 

  14. R.F. Kazarinov, R.A. Suris, Sov. Phys. Semicond. 5, 707 (1971)

    Google Scholar 

  15. D.A.B. Miller, Int. J. High Speed Electron. 1, 19 (1991)

    Article  Google Scholar 

  16. S.Y. Yuen, Appl. Phys. Lett. 43, 813 (1983)

    Article  ADS  Google Scholar 

  17. F. Ungan, S. Pal, M.K. Bahar, M.E. Mora-Ramos, Superlattices Microstruct. 130, 76 (2019)

    Article  ADS  Google Scholar 

  18. I. Karabulut, H. Safak, M. Tomak, J. Appl. Phys. 103, 103116 (2008)

    Article  ADS  Google Scholar 

  19. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  20. I. Karabulut, H. Safak, Phys. B 368, 82 (2005)

    Article  ADS  Google Scholar 

  21. W.F. Xie, Phys. Stat. Sol. B 246, 2257 (2009)

    Article  ADS  Google Scholar 

  22. R.H. Wei, W.F. Xie, Curr. Appl. Phys. 10, 757 (2010)

    Article  ADS  Google Scholar 

  23. S. Baskoutas, E. Paspalakis, A.F. Terzis, J. Phys. Condens. Matter 19, 395024 (2007)

    Article  Google Scholar 

  24. S. Baskoutas, C. Garoufalis, A.F. Terzis, Eur. Phys. J. B 84, 241 (2011)

    Article  ADS  Google Scholar 

  25. S. Baskoutas, A.F. Terzis, Eur. Phys. J. B 69, 237 (2009)

    Article  ADS  Google Scholar 

  26. L. Lu, W. Xie, Z. Shu, Combined effects of hydrostatic pressure and temperature on nonlinear properties of an exciton in a spherical quantum dot under the applied electric field. Phys. B Condens. Matter 406, 3735–3740 (2011)

    Article  ADS  Google Scholar 

  27. E. Ozturk, I. Sokmen, Nonlinear intersubband absorption and refractive index changes in square and graded quantum well modulated by temperature and Hydrostatic pressure. J. Lumin. 134, 42–48 (2013)

    Article  Google Scholar 

  28. M. Kirak, Y. Altinok, S. Yilmaz, The effects of the hydrostatic pressure and temperature on binding energy and optical properties of a donor impurity in a spherical quantum dot under external electric field. J. Lumin. 136, 415–421 (2013)

    Article  Google Scholar 

  29. I. Karabulut, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and optical absorption in GaAs–Ga1–xAlxAs asymmetric double quantum wells: combined effects of applied electric and magnetic fields and hydrostatic pressure. J. Lumin. 131, 1502–1509 (2011)

    Article  Google Scholar 

  30. J.C. Martínez-Orozco, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure. J. Lumin. 132, 449–456 (2012)

    Article  Google Scholar 

  31. G. Rezaei, S. Shojaeian Kish, Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: effects of hydrostatic pressure, external electric and magnetic fields. Superlattices Microstruct. 53, 99–112 (2013)

    Article  ADS  Google Scholar 

  32. O. Aytekin, S. Turgut, M. Tomak, Nonlinear optical properties of a Pöschl-Teller quantum well under electric and magnetic fields. Phys. E 44, 1612–1616 (2012)

    Article  Google Scholar 

  33. L. Zhang, H.-J. Xie, Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells. Phys. Rev. B 68, 235315 (2003)

    Article  ADS  Google Scholar 

  34. A. Keshavarz, M.J. Karimi, Linear and nonlinear intersubband optical absorption in symmetric double semi-parabolic quantum wells. Phys. Lett. A 374, 2675–2680 (2010)

    Article  ADS  Google Scholar 

  35. A. Salman Durmuslar, A. Turkoglu, M.E. Mora-Ramos, F. Ungan, The non-resonant intense laser field effects on the binding energies and the nonlinear optical properties of a donor impurity in Rosen–Morse quantum well, Indian J. Phys. (2022)

  36. İ Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  37. D. Altun, O. Ozturk, B.O. Alaydin, E. Ozturk, Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields. Micro Nanostruct. 207225 (2022)

  38. H. Dakhlaoui, M. Nefzi, Superlattices Microstruct. 136, 106292 (2019)

    Article  Google Scholar 

  39. U. Yesilgul, E.B. Al, J.C. Martínez-Orozco, R.L. Restrepo, M.E. Mora-Ramos, C.A. Duque, F. Ungan, E. Kasapoglu, Linear and nonlinear optical properties in an asymmetric double quantum well under intense laser field: effects of applied electric and magnetic fields. Opt. Mater. 58, 107–112 (2016)

    Article  ADS  Google Scholar 

  40. F. Ungan, M.E. Mora-Ramos, E. Kasapogluc, H. Sari, I. Sökmen, Nonlinear optical properties of triple δ-doped quantum wells: the impact of the applied external fields. Optik 180, 387–393 (2019)

    Article  ADS  Google Scholar 

  41. P. Başer, M.K. Bahar, Evaluation of the external electric- and magnetic field-driven Mathieu quantum dot’s optical observables. Phys. B 639, 413991 (2022)

    Article  Google Scholar 

  42. J.-B. Xia, W.-J. Fan, Electronic structures of superlattices under in-plane magnetic field. Phys. Rev. B 40, 8508–8515 (1989)

    Article  ADS  Google Scholar 

  43. E.B. Al, F. Ungan, U. Yesilgul, E. Kasapoglu, H. Sari, I. Sökmen, Infrared transitions between hydrogenic states in GaInNAs/GaAs quantum wells. Int. J. Mod. Phys. B 30, 1650139 (2016)

    Article  ADS  Google Scholar 

  44. E.M. Goldys, J.J. Shi, Linear and nonlinear intersubband optical absorption in a strained double barrier quantum well. Phys. Status Solidi B 210, 237–248 (1998)

    Article  ADS  Google Scholar 

  45. D. Ahn, S.L. Chuang, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J Quantum Electron QE 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

  46. S. Unlu, I. Karabulut, H. Safak, Linear and nonlinear intersubband optical absorption coefficients and refractive index changes in a quantum box with finite confining potential. Phys. E 33, 319–324 (2006)

    Article  Google Scholar 

  47. H. Sari, E.B. Al, E. Kasapoglu, S. Sakiroglu, I. Sökmen, M. Toro-Escobar, C.A. Duque, Electronic and optical properties of a D2+ complex in two-dimensional quantum dots with Gaussian confinement potential. Eur. Phys. J. Plus 137, 464 (2022)

    Article  Google Scholar 

  48. E.B. Al, E. Kasapoglu, H. Sari, I. Sökmen, Optical properties of spherical quantum dot in the presence of donor impurity under the magnetic field. Phys. B 613, 412874 (2021)

    Article  Google Scholar 

  49. P. Hashemi, M. Servatkhah, R. Pourmand, The effect of Rashba spin-orbit interaction on optical far-infrared transition of tuned quantum dot/ring systems. Opt. Quant. Electron. 53, 567 (2021)

    Article  Google Scholar 

  50. A.N. Aishah, H. Dakhlaoui, T. Ghrib, B.M. Wong, Phys. B 635, 413838 (2022)

    Article  Google Scholar 

  51. M.K. Bahar, P. Başer, Micro Nanostruct. 170, 207371 (2022)

    Article  Google Scholar 

  52. L. Máthé, C.P. Onyenegecha, A.A. Farcaş, L.M. Pioraş-Ţimbolmaş, M. Solaimani, H. Hassanabadi, Phys. Lett. A 397, 127262 (2021)

    Article  Google Scholar 

  53. P. Başer, M.K. Bahar, Phys. B 639, 413991 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Al.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al, E.B., Peter, A.J., Mora-Ramos, M.E. et al. Theoretical investigation of nonlinear optical properties of Mathieu quantum well. Eur. Phys. J. Plus 138, 49 (2023). https://doi.org/10.1140/epjp/s13360-023-03678-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03678-y

Navigation