Skip to main content
Log in

Near room temperature magnetocaloric effect of Cr1−xRuxO2 (x = 0.000, 0.125, and 0.250) for magnetic refrigeration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this scientific paper, we thoroughly investigated the magnetocaloric effect of Cr1−xRuxO2 (x = 0.000, 0.125, and 0.250) nanoparticles near room temperature. X-ray diffraction (XRD) is used to analyse the structure results. The magnetization versus temperature curves display a second-order magnetic phase transition from ferromagnetic (FM) to paramagnetic (PM) at 390, 302, and 286 K for x = 0.000, 0.125, and 0.250, respectively. The substitution of Cr by Ru leads to a decrease in TC from 390 to 286 K with an increasing concentration of ruthenium from 0.000 to 0.250. From the Curie–Weiss (CW) law, we have extracted the CW temperature (θP) and the experimental effective magnetic moment \((\mu_{{{\text{eff}}}}^{\exp } )\). In addition, these nanoparticles exhibit a large magnetic entropy change, which is advantageous to improve the relative cooling power (RCP). Under a magnetic field of 1.5 T, the RCP of Cr0.875Ru0.125O2 nanoparticles is found to be 324.35 J kg−1 at TC = 302 K which is superior to pure Gd at TC = 293 K. From heat capacity measurements, the adiabatic temperature change (ΔTad) is found to be 2.1 K for a magnetic field of 1.5 T. Consequently, a large magnetocaloric effect was observed in magnetic oxides. These magnetic oxide nanoparticles can be subject to magnetocaloric effect studies around the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code availability

No.

Data Availability Statement

Yes, data may available on the recommendation of the corresponding author.

References

  1. B. Rodríguez-Crespo, D. Salazar, S. Lanceros-Méndez, V. Chernenko, J. Alloys. Compd. 917, 165521 (2022). https://doi.org/10.1016/j.jallcom.2022.165521

    Article  Google Scholar 

  2. K. Laajimi, M. Kchaw, I. Fourati, J. Juraszek, M.H. Gazzah, J. Dhahri, Eur. Phys. J. Plus. 137, 943 (2022). https://doi.org/10.1140/epjp/s13360-022-03153-0

    Article  Google Scholar 

  3. V. Franco, J.S. Blázquez, J.J. Ipus, J.Y. Law, L.M. Moreno-Ramírez, A. Cond, Prog. Mater Sci. 93, 112 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  4. A. Elouafi, S. Derkaoui, R. Moubah, A. Tizliouine, A. Charkaoui, H. Lassri, J. Rare Earths. 39, 1232 (2021). https://doi.org/10.1016/j.jre.2020.09.020

    Article  Google Scholar 

  5. N.R. Ram, M. Prakash, U. Naresh, N.S. Kumar, T.S. Sarmash, T. Subbarao, R.J. Kumar, G.R. Kumar, K.C.B. Naidu, J. Supercond. Nov. Magn. 31, 1971 (2018). https://doi.org/10.1007/s10948-018-4666-z

    Article  Google Scholar 

  6. A. Elouafi, Y. Ounza, L.H. Omari, M. Oubla, M. Lassri, M. Sajieddine, H. Lassri, Appl. Phys. A. 127, 1 (2021). https://doi.org/10.1007/s00339-021-04358-3

    Article  Google Scholar 

  7. S. El Ouahbi, J. Supercond. Nov. Magn. 35, 2859 (2022). https://doi.org/10.1007/s10948-022-06325-2

    Article  Google Scholar 

  8. S. Wang, P. Liu, J. Chen, W. Cui, AIP Adv. 12, 035235 (2022). https://doi.org/10.1063/9.0000362

    Article  ADS  Google Scholar 

  9. P. Weiss, A. Piccard, J. Phys. Theor. Appl. 7, 103 (1917). To cite this version : HAL Id : jpa-00241982.

  10. L.M. Moreno-Ramírez, V. Franco, A. Conde, H. Neves Bez, Y. Mudryk, V.K. Pecharsky, J. Magn. Magn. Mater. 457, 64 (2018). https://doi.org/10.1016/j.jmmm.2018.02.083

    Article  ADS  Google Scholar 

  11. A.V. Kimel, A. Kirilyuk, A. Tsvetkov, R.V. Pisarev, T. Rasing, Nature 429, 850 (2004). https://doi.org/10.1038/nature02659

    Article  ADS  Google Scholar 

  12. A. Elouafi, R. Moubah, A. Tizliouine, S. Derkaoui, L.H. Omari, H. Lassri, Appl. Phys. A. 126, 1 (2020). https://doi.org/10.1007/s00339-020-3385-z

    Article  Google Scholar 

  13. T. Jiang, L. Xie, Y. Yao, Y. Liu, X. Li, Mater. Lett. 76, 25 (2012). https://doi.org/10.1016/j.matlet.2012.02.057

    Article  Google Scholar 

  14. A. Elouafi, R. Moubah, S. Derkaoui, A. Tizliouine, R. Cherkaoui, S. Shi, A. Bendani, M. Sajieddine, H. Lassri, Phys. A Stat. Mech. Appl. 523, 260 (2019). https://doi.org/10.1016/j.physa.2019.02.039

    Article  Google Scholar 

  15. V. Chaudhary, D.V. Maheswar Repaka, A. Chaturvedi, I. Sridhar, R.V. Ramanujan, J. Appl. Phys. 116, 163918 (2014). https://doi.org/10.1063/1.4900736

    Article  ADS  Google Scholar 

  16. A. Waske, B. Schwarz, N. Mattern, J. Eckert, J. Magn. Magn. Mater. 329, 101 (2013). https://doi.org/10.1016/j.jmmm.2012.10.003

    Article  ADS  Google Scholar 

  17. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, J.P. Liu, Adv. Mater. 23, 821 (2011). https://doi.org/10.1002/adma.201002180

    Article  Google Scholar 

  18. A.C. Gandhi, T.Y. Li, T.S. Chan, S.Y. Wu, Nanomaterials 8, 312 (2018). https://doi.org/10.3390/nano8050312

    Article  Google Scholar 

  19. A. Elouafi, R. Moubah, S. Derkaoui, A. Tizliouine, R. Cherkaoui, A. Bendani, H. Lassri, Appl. Phys. A. (2019). https://doi.org/10.1007/s00339-019-2533-9

    Article  Google Scholar 

  20. S. El Ouahbi, A. Charkaoui, R. Moubah, Z. Yamkane, S. Derkaoui, H. Lassri, Solid State Commun. 331, 114291 (2021). https://doi.org/10.1016/j.ssc.2021.114291

    Article  Google Scholar 

  21. F. Issaoui, E. Dhahri, E.K. Hlil, J. Low Temp. Phys. 200, 1–15 (2020). https://doi.org/10.1007/s10909-020-02447-w

    Article  ADS  Google Scholar 

  22. S. El Ouahbi, M. Lassri, M. Sajieddine, H. Lassri, Appl. Phys. A 128, 632 (2022). https://doi.org/10.1007/s00339-022-05764-x

    Article  ADS  Google Scholar 

  23. I. Hussain, A. Kumar, S.N. Khan, P. Brojabasi, B.H. Koo, Solid State Commun. 310, 113861 (2020). https://doi.org/10.1016/j.ssc.2020.113861

    Article  Google Scholar 

  24. A. Boutahar, S. Bahhar, H. Lemziouka, R. Moubah, E.K. Hlil, E. Lorenzo, H. Lassri, J. Magn. Magn. Mater. 504, 166684 (2020). https://doi.org/10.1016/j.jmmm.2020.166684

    Article  Google Scholar 

  25. T. Chakraborty, H. Nhalil, R. Yadav, A. Wagh, S. Elizabeth, J. Magn. Magn. Mater. 428, 59 (2017). https://doi.org/10.1016/j.jmmm.2016.12.015

    Article  ADS  Google Scholar 

  26. X.Y. Zhang, Y.J. Chen, Z.Y. Li, J. Phys D: Appl. Phys. 40, 3243 (2007). https://doi.org/10.1088/0022-3727/40/10/033

    Article  ADS  Google Scholar 

  27. A. Fujita, S. Fujieda, Y. Hasegawa, K. Fukamichi, Phys. Rev. B 67, 104416 (2003). https://doi.org/10.1103/PhysRevB.67.104416

    Article  ADS  Google Scholar 

  28. L. Huang, D.Y. Cong, H.L. Suo, Y.D. Wang, Appl. Phys. Lett. 104, 132407 (2014). https://doi.org/10.1063/1.4870771

    Article  ADS  Google Scholar 

  29. A. Ghosh, P. Sen, K. Mandal, J. Appl. Phys. 119, 183902 (2016). https://doi.org/10.1063/1.4948962

    Article  ADS  Google Scholar 

  30. Z. Xie, D.Y. Geng, Z.D. Zhang, Appl. Phys. Lett. 97, 202504 (2010). https://doi.org/10.1063/1.3518064

    Article  ADS  Google Scholar 

  31. M. Bourguiba, Z. Raddaoui, S. El Kossi, T. Al-shahrani, A. Dhahri, M. Chafra, J. Dhahri, H. Belmabrouk, J. Mater. Sci. Mater. Electron. 32, 6520 (2021). https://doi.org/10.1007/s10854-021-05370-2

    Article  Google Scholar 

  32. J. Lin, S. Li, L. Wang, J. Qiu, Z. Cai, X. Cao, H. Du, Q. Xue, S. Xie, Adv. Mater. Res. 683, 56 (2013). https://doi.org/10.4028/www.scientific.net/AMR.683.56

    Article  Google Scholar 

  33. A. Boutahar, R. Moubah, E.K. Hlil, H. Lassri, E. Lorenzo, Sci. Rep. 7(1), 1 (2017). https://doi.org/10.1038/s41598-017-14279-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. El Ouahbi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elouafi, A., El Ouahbi, S., Ezairi, S. et al. Near room temperature magnetocaloric effect of Cr1−xRuxO2 (x = 0.000, 0.125, and 0.250) for magnetic refrigeration. Eur. Phys. J. Plus 138, 22 (2023). https://doi.org/10.1140/epjp/s13360-022-03646-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03646-y

Navigation