Skip to main content
Log in

Numerical assessment of freezing of water in existence of nanoparticles inside container

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, utilizing curved wall for container and dispersing nanoparticles were utilized as method of promotion of efficacy of system. Container has two cold surfaces with shapes elliptic and sinusoidal. So, ice front has close curved form during the freezing. Alumina nanoparticles with three sizes have been exploited and efficacies of diameter of powders were involved. Galerkin’s approach for modeling the present problem has good accuracy and utilizing an adaptive grid may be one reason for such accuracy. As nanoparticle is added to the water, the requested time declines by 41.26%. The highest impact of concentration belongs to particles with a radius of 20 nm. Given ϕ = 0.04, as the diameter of particles alters from minimum to maximum values, the freezing time firstly declines about 20.01% then it increases around 49.3%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Ye. Wei-Biao, Li. Cong, G. Shuguang, H. Yuxiang, H. Si-Min, Xu. Shunsheng, Study on thermal uniformity and improvement for the drying of lithium-ion batteries. Int. J. Fluid Mech. Res. 46(6), 487–498 (2019). https://doi.org/10.1615/InterJFluidMechRes.2019027012

    Article  Google Scholar 

  2. Ye. Wei-Biao, Li. Cong, H. Si-Min, H. Yuxiang, Validation of thermal modeling of unsteady heat source generated in a rectangular lithium-ion power battery. Heat Trans. Res. 50(3), 233–241 (2019). https://doi.org/10.1615/HeatTransRes.2018026809

    Article  Google Scholar 

  3. T.-H. Zhao, M. Ijaz Khan, Y.-M. Chu, Artificial neural networking (ANN) analysis for heat and entropy generation in flow of non-Newtonian fluid between two rotating disks. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7310

    Article  Google Scholar 

  4. K. Karthikeyan, P. Karthikeyan, H.M. Baskonus, K. Venkatachalam, Y.-M. Chu, Almost sectorial operators on $\Psi$-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7954

    Article  Google Scholar 

  5. M. Sheikholeslami, Z. Said, M. Jafaryar, Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid. Renew. Energy. 188, 922–932 (2022). https://doi.org/10.1016/j.renene.2022.02.086

    Article  Google Scholar 

  6. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A.M. Abusorrah, A. Issakhov, N.H. Abu-Hamdeh, A. Shafee, Y.-M. Chu, Nanomaterial transportation and exergy loss modeling incorporating CVFEM. J. Mol. Liq. 330(15), 115591 (2021). https://doi.org/10.1016/j.molliq.2021.115591

    Article  Google Scholar 

  7. T. Li, M. Sun, S. Wu, State-of-the-art review of electrospun gelatin-based nanofiber dressings for wound healing applications. Nanomaterials 12(5), 784 (2022). https://doi.org/10.3390/nano12050784

    Article  ADS  Google Scholar 

  8. M. Sheikholeslami, Seyyed Ali Farshad, Nanoparticles transportation with turbulent regime through a solar collector with helical tapes. Adv. Powder Technol. 33(3), 103510 (2022). https://doi.org/10.1016/j.apt.2022.103510

    Article  Google Scholar 

  9. Y.M. Chu, U. Nazir, M. Sohail, M.M. Selim, J.R. Lee, Enhancement in thermal energy and solute particles using hybrid nanoparticles by engaging activation energy and chemical reaction over a parabolic surface via finite element approach. Fractal Fract. 5(3), 117–119 (2021). https://doi.org/10.3390/fractalfract5030119

    Article  Google Scholar 

  10. F. Li, M. Adel Almarashi, M.R. Jafaryar, Y.-M. Hajizadeh, Melting process of nanoparticle enhanced PCM through storage cylinder incorporating fins. Powder Technol.. 381, 551–560 (2021). https://doi.org/10.1016/j.powtec.2020.12.026

    Article  Google Scholar 

  11. J. Liu, T. Li, H. Zhang, W. Zhao, L. Qu, S. Chen, S. Wu, Electrospun strong, bioactive, and bioabsorbable silk fibroin/poly (L-lactic-acid) nanoyarns for constructing advanced nanotextile tissue scaffolds. Mater. Today Bio (2022). https://doi.org/10.1016/j.mtbio.2022.100243

    Article  Google Scholar 

  12. M. Sheikholeslami, Numerical investigation of solar system equipped with innovative turbulator and hybrid nanofluid. Sol. Energy Mater. Sol. Cells 243(15), 111786 (2022). https://doi.org/10.1016/j.solmat.2022.111786

    Article  Google Scholar 

  13. S. Rashid, S. Sultana, Y. Karaca, A. Khalid, Y.-M. Chu, Some further extensions considering discrete proportional fractional operators. Fractals 30(1), 2240026 (2022). https://doi.org/10.1142/S0218348X22400266

    Article  ADS  MATH  Google Scholar 

  14. P.-Y. Xiong, A. Almarashi, H.A. Dhahad, W.H. Alawee, A. Issakhov, Y.-M. Chu, Nanoparticles for phase change process of water utilizing FEM. J. Mol. Liq. (2021). https://doi.org/10.1016/j.molliq.2021.116096

    Article  Google Scholar 

  15. T. Li, W. Yin, S. Gao, Y. Sun, P. Xu, S. Wu, G. Wei, The Combination of two-dimensional nanomaterials with metal oxide nanoparticles for gas sensors: a review. Nanomaterials (2022). https://doi.org/10.3390/nano12060982

    Article  Google Scholar 

  16. M. Sheikholeslami, Analyzing melting process of paraffin through the heat storage with honeycomb configuration utilizing nanoparticles. J. Energy Stor.. 52(B15), 104954 (2022). https://doi.org/10.1016/j.est.2022.104954

    Article  Google Scholar 

  17. Y.-M. Chu, S. Bashir, M. Ramzan, M.Y. Malik, Model-based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8234

    Article  Google Scholar 

  18. H.Y. Jin, Z.A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system. Dis. Cont. Dyn. Syst.- Ser. A 40(6), 3509–3527 (2020). https://doi.org/10.3934/dcds.2020027

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Sheikholeslami, Z. Ebrahimpour, Nanofluid performance in a solar LFR system involving turbulator applying numerical simulation. Adv. Powder Technol. 33(8), 103669 (2022). https://doi.org/10.1016/j.apt.2022.103669

    Article  Google Scholar 

  20. Y.-M. Chu, N.H. Abu-Hamdeh, B. Ben-Beya, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J. Molec. Liq. 320(B15), 114457 (2020). https://doi.org/10.1016/j.molliq.2020.114457

    Article  Google Scholar 

  21. X. Huang, M. Cao, D. Wang, X. Li, Fan, J.,... Li, X., Broadband polarization-insensitive and oblique-incidence terahertz metamaterial absorber with multi-layered graphene. Opt. Mater. Exp. 12(2), 811 (2022). https://doi.org/10.1364/OME.451450

    Article  ADS  Google Scholar 

  22. M. Sheikholeslami, Numerical analysis of solar energy storage within a double pipe utilizing nanoparticles for expedition of melting. Sol. Energy Mater. Sol. Cells 245(15), 111856 (2022). https://doi.org/10.1016/j.solmat.2022.111856

    Article  Google Scholar 

  23. W.-M. Qian, H.-H. Chu, M.-K. Wang, Y.-M. Chu, Sharp inequalities for the Toader mean of order $-1$ in terms of other bivariate means. J. Math. Inequal. 16(1), 127–141 (2022). https://doi.org/10.7153/jmi-2022-16-10

    Article  MathSciNet  MATH  Google Scholar 

  24. P. Liu, J. Shi, Z.-A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems - B 18(10), 2597–2625 (2013). https://doi.org/10.3934/dcdsb.2013.18.2597

    Article  MathSciNet  MATH  Google Scholar 

  25. Y.-M. Chu, M.R. Hajizadeh, Z. Li, Q.-V. Bach, Investigation of nano powders influence on melting process within a storage unit. J. Molec. Liq. 318, 114321 (2020). https://doi.org/10.1016/j.molliq.2020.114321

    Article  Google Scholar 

  26. Y.-M. Chu, D. Yadav, A. Shafee, Z. Li, Q.-V. Bach, Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J. Mole. Liqu. 319, 114121 (2020). https://doi.org/10.1016/j.molliq.2020.114121

    Article  Google Scholar 

  27. C. Shi, Z. Wu, F. Yang, Y. Tang, Janus particles with pH switchable properties for high-efficiency adsorption of PPCPs in water. Solid State Sci. 119, 106702 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106702

    Article  Google Scholar 

  28. W.-T. Yan, C. Li, W.-B. Ye, Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink. Heat Trans. Asian Res. 48(6), 2329–2349 (2019). https://doi.org/10.1002/htj.21494

    Article  Google Scholar 

  29. W.-T. Yan, W.-B. Ye, C. Li, Effect of aspect ratio on saturated boiling flow in microchannels with nonuniform heat flux. Heat Trans. Asian. Res. 48(7), 3312–3327 (2019). https://doi.org/10.1002/htj.21543

    Article  Google Scholar 

  30. M. Nazeer, F. Hussain, M. Ijaz Khan, E.R. Asad-ur-Rehman, Y.-M. El-Zahar, M.Y.M. Chu, Theoretical study of MHD electro-osmotically flow of third-grade fluid in micro channel. Appl. Math. Comput. 420(126868), 15 (2022). https://doi.org/10.1016/j.amc.2021.126868

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Li, W.H. Alawee, M.J.H. Rawa, H.A. Dhahad, Y.-M. Chu, A. Issakhov, N.H. Abu-Hamdeh, M.R. Hajizadeh, Heat recovery application of nanomaterial with existence of turbulator. J. Mole. Liqu. 326, 115268 (2021). https://doi.org/10.1016/j.molliq.2020.115268

    Article  Google Scholar 

  32. B. Bai, Q. Nie, H. Wu, J. Hou, The attachment-detachment mechanism of ionic/nanoscale/microscale substances on quartz sand in water. Powder Technol. 394, 1158–1168 (2021). https://doi.org/10.1016/j.powtec.2021.09.051

    Article  Google Scholar 

  33. W.-B. Ye, Thermal simulation and evaluation for non-uniformity detection of electrode. Appl. Therm. Eng. 96, 583–592 (2016). https://doi.org/10.1016/j.applthermaleng.2015.12.007

    Article  Google Scholar 

  34. W.B. Ye, Finite volume analysis the thermal behavior of electrode non-uniformity. Heat Mass Transfer 53, 1123–1132 (2017). https://doi.org/10.1007/s00231-016-1879-1

    Article  ADS  Google Scholar 

  35. Y.-M. Chu, B.M. Shankaralingappa, B.J. Gireesha, F. Alzahrani, M. Ijaz Khan, S.U. Khan, Combined impact of cattaneo-christov double diffusion and radiative heat flux on bio-convective flow of maxwell liquid configured by a stretched nano-material surface. Appl. Math. Comput. 419, 126883 (2022). https://doi.org/10.1016/j.amc.2021.126883

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Wang, A. Almarashi, Y.A. Al-Turki, N.H. Abu-Hamdeh, M.R. Hajizadeh, Y.-M. Chu, Approaches for expedition of discharging of PCM involving nanoparticles and radial fins. J. Molecul. Liqu. (2020). https://doi.org/10.1016/j.molliq.2020.115052

    Article  Google Scholar 

  37. J. He, P. Xu, R. Zhou, H. Li, H. Zu, J. Zhang, F. Wang, Combustion synthesized Electrospun In-Zn-O nanowires for ultraviolet photodetectors. Adv. Elect. Mater. (2021). https://doi.org/10.1002/aelm.202100997

    Article  Google Scholar 

  38. M.J. Huang, P.C. Eames, B. Norton, Thermal regulation of building-integrated photovoltaics using phase change materials. Int J Heat Mass Tran 47(12), 2715–2733 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2003.11.015

    Article  Google Scholar 

  39. C. Liu, D. Groulx, Experimental study of the phase change heat transfer inside a horizontal cylindrical latent heat energy storage system. Int. J. Therm. Sci. 82, 100–110 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.03.014

    Article  Google Scholar 

  40. V. Muthya Goud, V. Vaisakh, M. Joseph, V. Sajith, An experimental investigation on the evaporation of polystyrene encapsulated phase change composite material based Nanofluids. Appl. Ther. Eng. 168, 114862 (2020)

    Article  Google Scholar 

  41. S.S. Sebti, M. Mastiani, H. Mirzaei, A. Dadvand, S. Kashani, S.A. Hosseini, Numerical study of the melting of nano-enhanced phase change material in a square cavity. J. Zheji. Univ. Sci. A 14(5), 307–316 (2013). https://doi.org/10.1631/jzus.A1200208

    Article  Google Scholar 

  42. M. Sohif, A. Al-Abidia Abduljalil, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Enhance heat transfer for PCM melting in triplex tube with internal–external fins. Energy Conv. Manage. 74, 223–236 (2013)

    Article  Google Scholar 

  43. B. Kok, M. Gürtürk, Determining effects of heat transfer fins on the solidification process of PCM and Nano-PCM with a rectangular cooler. Europ. J. Technic. 9(2), 263–274 (2019)

    Google Scholar 

  44. M.K. Rathod, J. Banerjee, Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Appl. Therm. Eng. 75, 1084–1092 (2015). https://doi.org/10.1016/j.applthermaleng.2014.10.074

    Article  Google Scholar 

  45. M. Sheikholeslami, Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J. Taiwan Inst. Chem. Eng. 86, 25–41 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Authors appreciate and thank Taif University for the financial support for Taif University Researchers Supporting Project (TURSP-2020/07), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amira M. Hussin.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saad, H.A., Hussin, A.M. Numerical assessment of freezing of water in existence of nanoparticles inside container. Eur. Phys. J. Plus 137, 1118 (2022). https://doi.org/10.1140/epjp/s13360-022-03274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03274-6

Navigation