Skip to main content
Log in

Maximal acceleration in a Lorentz invariant non-commutative space-time

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we derive the non-commutative corrections to the maximal acceleration in the Doplicher–Fredenhagen–Roberts (DFR) space-time and show that the effect of the non-commutativity is to decrease the magnitude of the value of the maximal acceleration in the commutative limit. We also obtain an upper bound on the acceleration along the non-commutative coordinates using the positivity condition on the magnitude of the maximal acceleration in the commutative space-time. From the Newtonian limit of the geodesic equation and Einstein’s equation for linearised gravity, we derive the explicit form of Newton’s potential in DFR space-time. By expressing the non-commutative correction term of the maximal acceleration in terms of Newton’s potential and applying the positivity condition, we obtain a lower bound on the radial distance between two particles under the gravitational attraction in DFR space-time. We also derive modified uncertainty relation and commutation relation between coordinates and its conjugate, due to the existence of maximal acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Note that here we have absorbed the factors of \(\pi \) into the definition of M.

References

  1. A. Connes, Noncommutative Geometry (Academic Press, London, 1994)

    MATH  Google Scholar 

  2. M.R. Douglas, N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001)

    Article  ADS  Google Scholar 

  3. R.J. Szabo, Phys. Rep. 378, 207 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Chaichian, P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604, 98 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  5. P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quan. Grav. 22, 3511 (2005)

    Article  ADS  Google Scholar 

  6. J. Lukierski, A. Nowicki, H. Ruegg, V.N. Tolstoy, Phys. Lett. B 264, 331 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Dimitrijevic, L. Jonke, L. Moller, E. Tsouchnika, J. Wess, M. Wohlgenannt, Eur. Phys. J C 31, 129 (2003)

    Article  ADS  Google Scholar 

  8. S. Meljanac, M. Stojic, Eur. Phys. J. C 47, 531 (2006)

    Article  ADS  Google Scholar 

  9. S. Doplicher, K. Fredenhagen, J.E. Roberts, Phys. Lett. B 331, 29 (1994)

    Article  ADS  Google Scholar 

  10. S. Doplicher, K. Fredenhagen, J.E. Roberts, Commun. Math. Phys. 172, 187 (1995)

    Article  ADS  Google Scholar 

  11. C.E. Carlson, C.D. Carone, N. Zobin, Phys. Rev. D 66, 075001 (2002)

    Article  ADS  Google Scholar 

  12. R. Amorim, Phys. Rev. D 78, 105003 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. E.M.C. Abreu, A.C.R. Mendes, W. Oliveira, A.O. Zangirolami, SIGMA 6, 083 (2010)

    Google Scholar 

  14. K. Morita, Prog. Theor. Phys. 108, 1099 (2002)

    Article  ADS  Google Scholar 

  15. H. Kase, K. Morita, Y. Okumura, E. Umezawa, Prog. Theor. Phys. 109, 663 (2003)

    Article  ADS  Google Scholar 

  16. C.D. Carone, H.J. Kwee, Phys. Rev. D 73, 096005 (2006)

    Article  ADS  Google Scholar 

  17. S. Saxell, Phys. Rev. Lett. B 666, 486 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. K. Morita, Y. Okumura, E. Umezawa, Prog. Theo. Phys. 110, 989 (2003)

    Article  ADS  Google Scholar 

  19. M. Haghighat, M.M. Ettefaghi, Phys. Rev. D 70, 034017 (2004)

    Article  ADS  Google Scholar 

  20. M.M. Ettefaghi, M. Haghighat, Phys. Rev. D 75, 125002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Amorim, E.M.C. Abreu, Phys. Rev. D 80, 105010 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Amorim, J. Mat. Phys. 50, 022303 (2009)

    Article  ADS  Google Scholar 

  23. E.M.C. Abreu, M.J. Neves, Nucl. Phys. B 884, 741 (2014)

    Article  ADS  Google Scholar 

  24. E.M.C. Abreu, M.J. Neves, Int. J. Mod. Phys. A 32, 1750099 (2017)

    Article  ADS  Google Scholar 

  25. E. Harikumar, V. Rajagopal, Nucl. Phys. B 974, 115633 (2022)

    Article  Google Scholar 

  26. E. Harikumar, S. K. Panja, arXiv:2110.05004 [hep-th]

  27. J. Gomis, T. Mehen, Nucl. Phys. B 591, 265 (2000)

    Article  ADS  Google Scholar 

  28. E.M.C. Abreu, R. Amorim, W.G. Ramirez, JHEP 03, 135 (2011)

    Article  ADS  Google Scholar 

  29. M.J. Neves, E.M.C. Abreu, Eur. Phys. Lett. 131, 21001 (2020)

    Article  ADS  Google Scholar 

  30. D. Kothawala, Phys. Rev. D 88, 104029 (2013)

    Article  ADS  Google Scholar 

  31. V.P. Frolov, N. Sanchez, Nucl. Phys. B 349, 815 (1991)

    Article  ADS  Google Scholar 

  32. C. Rovelli, Living Rev. Relativ. 01, 1 (1998)

    Article  ADS  Google Scholar 

  33. E. Harikumar, L.G.C. Lakkaraju, V. Rajagopal, Mod. Phys. Lett. A 36, 2150069 (2021)

    Article  ADS  Google Scholar 

  34. E.R. Caianiello, Lett. Nuovo Cimento 32, 65 (1981)

    Article  Google Scholar 

  35. E.R. Caianiello, S. De Filippo, G. Marmo, G. Vilasi, Lett. Nuovo Cimento 34, 112 (1982)

    Article  MathSciNet  Google Scholar 

  36. E.R. Cainaniello, Lett. Nuovo Cimento 41, 11 (1984)

    Article  MathSciNet  Google Scholar 

  37. W.R. Wood, G. Papini, Y.Q. Cai, Nuovo Cimento B 104, 361 (1989)

    Article  ADS  Google Scholar 

  38. C.S. Sharma, S. Srirankanathan, Lett. Nuovo Cimento 44, 275 (1989)

    Article  Google Scholar 

  39. A. K. Pati, Lett. Nuovo Cimento B 107 (1992)

  40. H.E. Brandt, Lett. Nuovo Cimento 38, 15 (1983)

    Article  Google Scholar 

  41. E.R. Caianiello, G. Landi, Lett. Nuovo Cimento 42, 70 (1985)

    Article  Google Scholar 

  42. A.D. Sakharov, JETP Lett. 3, 288 (1966)

    Google Scholar 

  43. R.G. Torrome, Class. Quantum Grav. 32, 245007 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. R.G. Torrome, P. Nicolini, Int. J. Mod. Phys. A 33, 1830019 (2018)

    Article  ADS  Google Scholar 

  45. R.G. Torrome, Int. J. Geom. Meth. Mod. Phys. 17, 2050060 (2020)

    Article  MathSciNet  Google Scholar 

  46. V.V. Nesterenko, A. Feoli, G. Lambiase, G. Scarpetta, Phys. Rev. D 60, 065001 (1999)

    Article  ADS  Google Scholar 

  47. G.S. Scarpetta, Lett. Nuovo Cimento 41, 2 (1984)

    Article  Google Scholar 

  48. A. Feoli, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. A 263, 147 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  49. V. Bozza, A. Feoli, G. Papini, G. Scarpetta, Phys. Lett. A 271, 35 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  50. V. Bozza, A. Feoli, G. Lambiase, G. Papini, G. Scarpetta, Phys. Lett. A 283, 53 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  51. E.R. Caianiello, M. Gasperini, G. Scarpetta, Nuovo Cimento B 105, 3 (1990)

    Article  Google Scholar 

  52. M. Gaspaini, Astro. Sp. Sc. 138, 2 (1987)

    Google Scholar 

  53. S. Kuwata, Lett. Nuovo Cimento B 111, 893 (1996)

    Article  ADS  Google Scholar 

  54. G. Lambiase, G. Papini, G. Scarpetta, Nuovo Cimento B 114, 189 (1999)

    ADS  Google Scholar 

  55. L. Buoninfante, Int. J. Mod. Phys. D 30, 2142012 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  56. M. Born, Proc. R. Soc. Lond. A 165, 291 (1938)

    Article  ADS  Google Scholar 

  57. E. Harikumar, V. Rajagopal, Ann. Phys. 423, 168332 (2020)

    Article  Google Scholar 

  58. G.G. Luciano, L. Petruzziello, Eur. Phys. J. C 79, 283 (2019)

    Article  ADS  Google Scholar 

  59. A. Micu, M.M. Sheikh-Jabbari, JHEP 01, 025 (2001)

    Article  ADS  Google Scholar 

  60. H.M. Lynch, E. Cohen, Y. Hadad, I. Kaminer, Phys. Rev. D 104, 025015 (2021)

    Article  ADS  Google Scholar 

  61. S. Hassani, Mathematical Physics : A Modern Introduction to Its Foundations (Springer-Verlag, New York Inc, 1999)

    Book  MATH  Google Scholar 

  62. Yuchen Du, S. Tahura, D. Vaman, K. Yagi, Phys. Rev. D 103 (2021) 044031

  63. A. Kehagias, K. Sfetsos, Phys. Lett. B 472, 39 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  64. M. Rabinowitz, Int. J. Theo. Phys. 40, 875 (2001)

    Article  Google Scholar 

  65. A. Pérez-Lorenzana, J. Phys.: Conf. Ser. 18, 006 (2005)

    Google Scholar 

  66. E. Harikumar, V.O. Rivelles, Class. Quantum Grav. 23, 7551 (2006)

    Article  ADS  Google Scholar 

  67. E. Harikumar, A.K. Kapoor, Mod. Phys. Lett. A 25, 2991 (2010)

    Article  ADS  Google Scholar 

  68. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  69. L. Buoninfante, G.G. Luciano, L. Petruzziello, F. Scardigli, Phys. Lett. B 824, 136818 (2022)

    Article  Google Scholar 

  70. F. Tamburini, F. Feleppa, B. Thide, Phys. Lett. B 826, 136894 (2022)

    Article  Google Scholar 

  71. S. Giardino, V. Salzano, Eur. Phys. J. C 81, 110 (2021)

    Article  ADS  Google Scholar 

  72. A. Das, S. Das, N.R. Mansour, E.C. Vagenas, Phys. Lett. B 819, 136429 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

S.K.P. thanks UGC, India, for the support through JRF scheme (id.191620059604). V.R. thanks Government of India, for support through DST-INSPIRE/IF170622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Harikumar.

Appendix A

Appendix A

In this appendix, we derive a length-scale-dependent commutation relation between commutative coordinate and its conjugate using the expression for the maximal acceleration obtained in the DFR space-time.

The uncertainty relation between energy and an arbitrary function of time f(t) can be expressed as [36,37,38,39]

$$\begin{aligned} \Delta E\Delta f(t) \ge \frac{\hslash }{2}\frac{df(t)}{dt} \end{aligned}$$
(A.1)

Using the above relation, we write down uncertainty relation between energy and velocity and that between energy and position as,

$$\begin{aligned} \Delta E\Delta v(t) \ge \frac{\hslash }{2}\frac{dv}{dt} \end{aligned}$$
(A.2)

and

$$\begin{aligned} \Delta E\Delta x(t) \ge \frac{\hslash }{2}\frac{dx}{dt}, \end{aligned}$$
(A.3)

respectively. Multiplying the above uncertainty relations, given in Eqs. (A.2) and (A.3), we get

$$\begin{aligned} \big (\Delta E\big )^2\Delta x\frac{\Delta v}{v}\ge \frac{\hslash ^2}{4}{\mathcal {A}} \end{aligned}$$
(A.4)

where we have used the definitions \(v=\frac{dx}{dt}\) and \({\mathcal {A}}=\frac{dv}{dt}\). Now we express \(\Delta E\) as \(\Delta E=v\Delta p\), and we get

$$\begin{aligned} \big (\Delta p\big )^2\Delta x\big ({\Delta v}\big )v\ge \frac{\hslash ^2}{4}{\mathcal {A}}. \end{aligned}$$
(A.5)

From the special theory of relativity, we infer that the uncertainty in velocity of the particle cannot exceed the velocity of light, i.e. \((\Delta v)^2=<v^2>-<v>^2\le v_{max}^2\le c^2\), so we take \((\Delta v)v\le c^2\). After using this relation in the above equation, we find that

$$\begin{aligned} \big (\Delta x\Delta p\big )^2c^2\ge \frac{\hslash ^2}{4}{\mathcal {A}}\Delta x \end{aligned}$$
(A.6)

After setting \(\Delta x\) in the RHS with Compton wavelength, \(\lambda _c=\frac{\hslash }{mc}\) we get

$$\begin{aligned} \big (\Delta x\Delta p\big )^2\ge \frac{\hslash ^3}{4mc^3}{\mathcal {A}}. \end{aligned}$$
(A.7)

It has been shown in [36,37,38,39] that one obtains the maximal acceleration in the commutative space-time, by using the uncertainty relation between the spatial coordinate and its conjugate momenta in the above expression.

Now we generalise Eq. (A.7) into DFR space-time by replacing the commutative spatial coordinate \(x_i\) and its conjugate \(p_i\) with DFR spatial coordinate \(X_i\) (where \(X_i=(x_i,\theta _i/\lambda )\)) and its conjugate \(P_i\) (where \(P_i=(p_i,\lambda k_i)\)). We also rewrite \({\mathcal {A}}\) using \({\mathcal {A}}_{max}\) expression given in Eq. (3.9). Thus, Eq. (A.7) becomes

$$\begin{aligned} \big (\Delta X\Delta P)^2 \ge \frac{\hslash ^2}{4}\Big (1-\frac{\lambda ^2a_{\theta }^2\hslash ^2}{2m^2c^6}\Big ). \end{aligned}$$
(A.8)

Thus, we find that the commutation relation between the DFR coordinate and its conjugate momenta gets modified as

$$\begin{aligned}{}[X_i,P_j]=i\hslash \Big (1-\frac{\lambda ^2a_{\theta }^2\hslash ^2}{4m^2c^6}\Big )\delta _{ij}, \text { where }i,j=1\text { to }6. \end{aligned}$$
(A.9)

Note that Eq. (A.9) gives a modified commutation relation between the DFR spatial coordinates and their conjugates. Thus, we get a modified commutation relation between \(x_i\) and \(p_i\) apart from that between \(\theta _i\) and \(k_i\). Therefore, we have

$$\begin{aligned}{}[x_i,p_j]=i\hslash \Big (1-\frac{\lambda ^2a_{\theta }^2\hslash ^2}{4m^2c^6}\Big )\delta _{ij},\text { where }i,j=1,2,3. \end{aligned}$$
(A.10)

This shows that the existence of maximal acceleration implies a minimal length-scale-dependent modification to the commutation relation between coordinate and its conjugate. In [68], a length-scale-dependent commutation relation known as GUP, between coordinate and its conjugate given by

$$\begin{aligned}{}[x_i,p_j]=i\hslash \Big (1+\frac{\beta l^2_{Pl}p^2}{\hslash ^2}\Big )\delta _{ij}, \text { where }i,j=1,2,3. \end{aligned}$$
(A.11)

has been analysed and corresponding uncertainty relation between x and p was obtained. Comparing Eq. (A.10) with Eq. (A.11) and setting \(\lambda =l_{Pl}\), we find the generalised uncertainty principle parameter \(\beta \) in terms of the \(a_{\theta }\) as \(\beta =-\frac{a_{\theta }^2\hslash ^4}{4m^2c^6p^2}\).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harikumar, E., Panja, S.K. & Rajagopal, V. Maximal acceleration in a Lorentz invariant non-commutative space-time. Eur. Phys. J. Plus 137, 966 (2022). https://doi.org/10.1140/epjp/s13360-022-03195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03195-4

Navigation