Skip to main content
Log in

Dynamics of two magnons coupled to an open microwave cavity: local quantum Fisher- and local skew-information coherence

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates the generation and robustness of two-magnon quantum correlation and coherence in noisy channels. The system consists of two-sublattice magnons interacting with photons inside a cavity, which leads to magnon–magnon and photon–magnon interactions. The influence of cavity dissipation and spontaneous emission on two-magnon dynamics is analyzed using several correlation and coherence measures (specifically, local quantum uncertainty, local quantum Fisher information, and concurrence) for different magnon–magnon and photon–magnon couplings. In the absence of the cavity dissipation and spontaneous emission, the results show the ability of the photon–magnon and magnon–magnon interactions (with a pure photon–magnon state as the initial state) to generate a maximal magnon–magnon mixedness and quantum correlation. The local quantum uncertainty and local quantum Fisher information exhibit sudden changes’ phenomenon. In case of an initial maximal correlated two-magnon state, the local quantum Fisher information and the concurrence are not fragile in comparison with the local uncertainity by variation of photon–magnon interactions. The two-magnon correlations decrease as the spontaneous emission and the cavity dissipation increase, whereas the coherence of the two-magnon local quantum Fisher and local skew information is sustained at their maxima.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

Data are available on request from the corresponding author.

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001)

    MATH  Google Scholar 

  2. S. Wehner, D. Elkouss, R. Hanson, Science 362, 303 (2018)

    Article  MathSciNet  Google Scholar 

  3. Z.-L. Xiang, S. Ashhab, J.Q. You, Franco Nori, Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  4. I. Buluta, S. Ashhab, Franco Nori, Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  5. I. Buluta1, F. Nori, Science 326, 108 (2009)

  6. I.M. Georgescu, S. Ashhab, F. Nori, Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  7. A.V. Chumak, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Phys. 11, 453 (2015)

    Article  Google Scholar 

  8. S. Viola Kusminskiy, H.X. Tang, F. Marquardt, Phys. Rev. A 94, 033821 (2016)

    Article  ADS  Google Scholar 

  9. P. Pirro, V.I. Vasyuchka, A.A. Serga, B. Hillebrands, Nat. Rev. Mater. 6, 1114 (2021)

    Article  ADS  Google Scholar 

  10. C. Zhao, R. Peng, Z. Yang, S. Chao, C. Li, Z. Wang, L. Zhou, Phys. Rev. A 105, 023709 (2022)

    Article  ADS  Google Scholar 

  11. Y.-L. Ren, J.-K. Xie, X.-K. Li, S.-L. Ma, F.-L. Li, Phys. Rev. B 105, 094422 (2022)

    Article  ADS  Google Scholar 

  12. C.-Xi Ning, M. Yin, J. Opt. Soc. Amer. B 38, 3020 (2021)

  13. H.Y. Yuan, S. Zheng, Z. Ficek, Q.Y. He, M.-H. Yung, Phys. Rev. B 101, 014419 (2020)

    Article  ADS  Google Scholar 

  14. M.-S. Ding, L. Zheng, Chong Li. Sci. Rep. 9, 15723 (2019)

    Article  ADS  Google Scholar 

  15. Z.-B. Yang, J.-S. Liu, H. Jin, Q.-H. Zhu, A.-D. Zhu, H.-Y. Liu, Y. Ming, R.-C. Yang, Opt. Express 28, 31862 (2020)

    Article  ADS  Google Scholar 

  16. J. Li, S.-Y. Zhu, New J. Phys. 21, 085001 (2019)

    Article  ADS  Google Scholar 

  17. D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, J. You, npj Quantum Inf. 1, 15014 (2015)

    Article  ADS  Google Scholar 

  18. J. Zhao, L. Wu, T. Li, Y.-X. Liu, F. Nori, Y. Liu, J. Du, Phys. Rev. Appl. 15, 024056 (2021)

    Article  ADS  Google Scholar 

  19. G.-Q. Zhang, Z. Chen, D. Xu, N. Shammah, M. Liao, T.-F. Li, L. Tong, S.-Y. Zhu, F. Nori, J.Q. You, PRX Quantum 2, 020307 (2021)

    Article  ADS  Google Scholar 

  20. R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, Y. Nakamura, Phys. Rev. B 93, 174427 (2016)

    Article  ADS  Google Scholar 

  21. A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, K. Usami, Phys. Rev. Lett. 120, 133602 (2018)

    Article  ADS  Google Scholar 

  22. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  23. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  24. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  25. A.-B.A. Mohamed, H. Eleuch, C.H. Raymond Ooi, Sci. Rep. 9, 19632 (2019)

    Article  ADS  Google Scholar 

  26. A.-B.A. Mohamed, H. Eleuch, C.H. Raymond Ooi, Phys. Lett. A 383, 125905 (2019)

    Article  MathSciNet  Google Scholar 

  27. J. Kempe, Phys. Rev. A 60, 910 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  28. J. Jing, J. Zhang, Y. Yan, F. Zhao, C. Xie, K. Peng, Phys. Rev. Lett. 90, 167903 (2003)

    Article  ADS  Google Scholar 

  29. R. Jozsa, N. Linden, Phys. Eng. Sci. 459, 2011 (2003)

    Article  Google Scholar 

  30. M. Asjad, M. Qasymeh, H. Eleuch, Phys. Rev. Appl. 16, 034046 (2021)

    Article  ADS  Google Scholar 

  31. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  32. D. Girolami, A.M. Souza, V. Giovannetti, T. Tufarelli, J.G. Filgueiras, R.S. Sarthour, D.O. Soares-Pinto, I.S. Oliveira, G. Adesso, Phys. Rev. Lett. 112, 210401 (2014)

    Article  ADS  Google Scholar 

  33. H.S. Dhar, M.N. Bera, G. Adesso, Phys. Rev. A 991, 032115 (2015)

    Article  ADS  Google Scholar 

  34. E.P. Wigner, M.M. Yanase, Proc. Natl. Acad. Sci. 49, 910 (1963)

    Article  ADS  Google Scholar 

  35. D. Girolami, T. Tufarelli, G. Adesso, Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  36. S.-X. Wu, J. Zhang, C.-S. Yu, H.-S. Song, Phys. Lett. A 378, 344 (2014)

    Article  ADS  Google Scholar 

  37. R.A. Fisher, Math. Proc. Camb. Phil. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  38. K. Modi, H. Cable, M. Williamson, V. Vedral, Phys. Rev. X 1, 021022123 (2011)

    Google Scholar 

  39. R. Jafari, A. Akbari, Phys. Rev. A 101, 062105 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  40. S. Kim, L. Li, A. Kumar, J. Wu, Phys. Rev. A 97, 032326 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  41. J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89–165 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Dressel, F. Nori, Phys. Rev. A 89, 022106 (2014)

    Article  ADS  Google Scholar 

  43. J. Li, S.-Y. Zhu, G.S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018)

    Article  ADS  Google Scholar 

  44. H.Y. Yuan, P. Yan, S. Zheng, Q.Y. He, K. Xia, M.-H. Yung, Phys. Rev. Lett. 124, 053602 (2020)

    Article  ADS  Google Scholar 

  45. H.Y. Yuan, S. Zheng, Z. Ficek, Q.Y. He, M.-H. Yung, Phys. Rev. B 101, 014419 (2020)

    Article  ADS  Google Scholar 

  46. H. Eleuch, J. Phys. B At. Mol. Opt. Phys. 41, 055502 (2008)

    Article  ADS  Google Scholar 

  47. A.-B. Mohamed, H. Eleuch, Eur. Phys. J. D 69, 191 (2015)

    Article  ADS  Google Scholar 

  48. A.V. Fedorova, M.A. Yurischev, Quantum Inf. Process. 21, 92 (2022)

    Article  ADS  Google Scholar 

  49. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  50. A. Slaoui, L. Bakmou, M. Daoud, R. AhlLaamara, Phys. Lett. A 19, 2241 (2019)

    Article  ADS  Google Scholar 

  51. M.G.A. Paris, Int. J. Quantum Inf. 7, 125 (2009)

    Article  Google Scholar 

  52. J. Maziero, L.C. Celeri, R.M. Serra, V. Vedral, Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  53. R.A. Abdelghany, A.-B.A. Mohamed, M. Tammam, A.-S.F. Obada, Eur. Phys. J. Plus 136, 680 (2021)

    Article  Google Scholar 

  54. J.-S. Xu, X.-Y. Xu, C.-F. Li, C.-J. Zhang, X.-B. Zou, G.-C. Guo, Nat. Commun. 1, 7 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the referees for their important remarks which improve the manuscript. The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF-PSAU-2021/01/17712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-B. A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, AB.A., Eleuch, H. Dynamics of two magnons coupled to an open microwave cavity: local quantum Fisher- and local skew-information coherence. Eur. Phys. J. Plus 137, 853 (2022). https://doi.org/10.1140/epjp/s13360-022-03042-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03042-6

Navigation