Skip to main content
Log in

A variational approach for the ground-state profile of a trapped spinor-BEC: a detailed study of phase transition in spin-1 condensate at zero magnetic field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we introduce a multi-modal variational method to analytically estimate the full number- and corresponding energy-density profile of a spin-1 Bose-Einstein condensate (BEC) for a number of particles as low as 500 under harmonic confinement. To apply this method, we consider a system of spin-1 BEC under three-dimensional isotropic and effective one-dimensional harmonic confinement in the absence (negligible presence) of the magnetic field which has ground-state candidates of comparable energy. It should be noted that in such circumstances kinetic energy contribution to the ground state cannot be neglected which puts the applicability of Thomas–Fermi (T-F) approximation to question. For anti-ferromagnetic condensates, the T-F approximated energy difference between the competing stationary states (ground state and the first excited state) is approximately 0.5%. As T-F approximation is only good for condensates with a large number of particles, T-F approximated predictions can completely go wrong especially for small condensates. This is where comes the role of a detailed analysis using our variational method, which incorporates the kinetic energy contribution and accurately estimates the number- and energy-density profile even for condensates having a small number of particles. Results of our analytical method are supported by numerical simulation. This variational method is general and can be extended to other similar/higher-dimensional problems to get results beyond the accuracy of the T-F approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: All the codes and the data generated and used in this manuscript is personally saved with the corresponding author. It has not been uploaded in any online data repository.]

References

  1. D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle, Optical confinement of a bose-einstein condensate. Phys. Rev. Lett. 80, 2027–2030 (1998). https://doi.org/10.1103/PhysRevLett.80.2027

    Article  ADS  Google Scholar 

  2. W. Zhang, S. Yi, L. You, Mean field ground state of a spin-1 condensate in a magnetic field. New J. Phys. 5, 77 (2003). https://doi.org/10.1088/1367-2630/5/1/377

    Article  ADS  Google Scholar 

  3. M. Matuszewski, Ground states of trapped spin-1 condensates in magnetic field. Phys. Rev. A 82, 053630 (2010). https://doi.org/10.1103/PhysRevA.82.053630

    Article  ADS  Google Scholar 

  4. Y. Kawaguchi, M. Ueda, Spinor bose-einstein condensates. Phys. Rep. 520(5), 253–381 (2012). https://doi.org/10.1016/j.physrep.2012.07.005

    Article  ADS  MathSciNet  Google Scholar 

  5. J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Spin domains in ground-state bose-einstein condensates. Nature 396(6709), 345–348 (1998)

    Article  ADS  Google Scholar 

  6. E. Timmermans, Phase separation of bose-einstein condensates. Phys. Rev. Lett. 81, 5718–5721 (1998). https://doi.org/10.1103/PhysRevLett.81.5718

    Article  ADS  Google Scholar 

  7. J.-H. Chen, I.-L. Chern, W. Wang, A complete study of the ground state phase diagrams of spin-1 bose-einstein condensates in a magnetic field via continuation methods. J. Sci. Comput. 64, 35–54 (2015). https://doi.org/10.1007/s10915-014-9924-z

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Świsłocki, M. Matuszewski, Controlled creation of spin domains in spin-1 bose-einstein condensates by phase separation. Phys. Rev. A 85, 023601 (2012). https://doi.org/10.1103/PhysRevA.85.023601

    Article  ADS  Google Scholar 

  9. K.-T. Xi, J. Li, D.-N. Shi, Phase separation of a two-component dipolar bose-einstein condensate in the quasi-one-dimensional and quasi-two-dimensional regime. Phys. Rev. A 84, 013619 (2011). https://doi.org/10.1103/PhysRevA.84.013619

    Article  ADS  Google Scholar 

  10. S. Bandyopadhyay, A. Roy, D. Angom, Dynamics of phase separation in two-species bose-einstein condensates with vortices. Phys. Rev. A 96, 043603 (2017). https://doi.org/10.1103/PhysRevA.96.043603

    Article  ADS  Google Scholar 

  11. T. Isoshima, K. Machida, T. Ohmi, Spin-domain formation in spinor bose-einstein condensation. Phys. Rev. A 60, 4857–4863 (1999). https://doi.org/10.1103/PhysRevA.60.4857

    Article  ADS  Google Scholar 

  12. M. Matuszewski, T.J. Alexander, Y.S. Kivshar, Spin-domain formation in antiferromagnetic condensates. Phys. Rev. A 78, 023632 (2008). https://doi.org/10.1103/PhysRevA.78.023632

    Article  ADS  Google Scholar 

  13. M. Matuszewski, T.J. Alexander, Y.S. Kivshar, Excited spin states and phase separation in spinor bose-einstein condensates. Phys. Rev. A 80, 023602 (2009). https://doi.org/10.1103/PhysRevA.80.023602

    Article  ADS  Google Scholar 

  14. T.-L. Ho, V.B. Shenoy, Binary mixtures of bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276–3279 (1996). https://doi.org/10.1103/PhysRevLett.77.3276

    Article  ADS  Google Scholar 

  15. S. Bhuvaneswari, K. Nithyanandan, P. Muruganandam, Spotlighting phase separation in rashba spin-orbit coupled bose-einstein condensates in two dimensions. J. Phys. Commun. 2(2), 025008 (2018)

    Article  Google Scholar 

  16. L. Wen, W.M. Liu, Y. Cai, J.M. Zhang, J. Hu, Controlling phase separation of a two-component bose-einstein condensate by confinement. Phys. Rev. A 85, 043602 (2012). https://doi.org/10.1103/PhysRevA.85.043602

    Article  ADS  Google Scholar 

  17. Z. Liu, Phase separation of two-component bose-einstein condensates. J. Math. Phys. 50(10), 102104 (2009). https://doi.org/10.1063/1.3243875

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. L. Zhu, J. Li, Phase separation of two-component bose-einstein condensates with monopolar interaction. Mod. Phys. Lett. B 31(23), 1750215 (2017). https://doi.org/10.1142/S0217984917502153

    Article  ADS  MathSciNet  Google Scholar 

  19. S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Controlling phase separation of binary bose-einstein condensates via mixed-spin-channel feshbach resonance. Phys. Rev. A 82, 033609 (2010). https://doi.org/10.1103/PhysRevA.82.033609

    Article  ADS  Google Scholar 

  20. Li, J., Yu, Y.M., Jiang, K.J., Liu, W.M, Phase separation and hidden vortices induced by spin-orbit coupling in spin-1 bose-einstein condensates. arXiv preprint arXiv:1802.00138, (2018)

  21. K.L. Lee, N.B. Jørgensen, I.-K. Liu, L. Wacker, J.J. Arlt, N.P. Proukakis, Phase separation and dynamics of two-component bose-einstein condensates. Phys. Rev. A 94, 013602 (2016)

    Article  ADS  Google Scholar 

  22. J. Sabbatini, W.H. Zurek, M.J. Davis, Phase separation and pattern formation in a binary bose-einstein condensate. Phys. Rev. Lett. 107, 230402 (2011). https://doi.org/10.1103/PhysRevLett.107.230402

    Article  ADS  Google Scholar 

  23. S. Gautam, S.K. Adhikari, Phase separation in a spin-orbit-coupled bose-einstein condensate. Phys. Rev. A 90, 043619 (2014). https://doi.org/10.1103/PhysRevA.90.043619

    Article  ADS  Google Scholar 

  24. S. Gautam, D. Angom, Phase separation of binary condensates in harmonic and lattice potentials. J. Phys. B: Atomic, Molecular and Opt. Phys. 44(2), 025302 (2011)

    Article  ADS  Google Scholar 

  25. H. Saito, M. Ueda, Spontaneous magnetization and structure formation in a spin-1 ferromagnetic bose-einstein condensate. Phys. Rev. A 72, 023610 (2005). https://doi.org/10.1103/PhysRevA.72.023610

    Article  ADS  Google Scholar 

  26. K.K. Projjwal, A. Bhattacharyay, Spin domains in ground state of a trapped spin-1 condensate: a general study under thomas-fermi approximation. Physica Scripta 95(4), 045702 (2020)

    Article  ADS  Google Scholar 

  27. I. Vidanović, N.J. Van Druten, M. Haque, Spin modulation instabilities and phase separation dynamics in trapped two-component bose condensates. New Journal of Physics 15(3), 035008 (2013)

    Article  ADS  Google Scholar 

  28. X. Yu, P.B. Blakie, Dark-soliton-like magnetic domain walls in a two-dimensional ferromagnetic superfluid. Phys. Rev. Res. 3, 023043 (2021). https://doi.org/10.1103/PhysRevResearch.3.023043

    Article  Google Scholar 

  29. S. Gautam, S.K. Adhikari, Analytic models for the density of a ground-state spinor condensate. Phys. Rev. A 92, 023616 (2015). https://doi.org/10.1103/PhysRevA.92.023616

    Article  ADS  Google Scholar 

  30. K. Jiménez-García, A. Invernizzi, B. Evrard, C. Frapolli, J. Dalibard, F. Gerbier, Spontaneous formation and relaxation of spin domains in antiferromagnetic spin-1 quasi-condensates. Nat. Commun. 10, 1422 (2019). https://doi.org/10.1038/s41467-019-08505-6

    Article  ADS  Google Scholar 

  31. T.-L. Ho, Spinor bose condensates in optical traps. Phys. Rev. Lett. 81, 742–745 (1998). https://doi.org/10.1103/PhysRevLett.81.742

    Article  ADS  Google Scholar 

  32. S. Yi, Ö.E. Müstecaplıoğlu, C.P. Sun, L. You, Single-mode approximation in a spinor-1 atomic condensate. Phys. Rev. A 66, 011601 (2002). https://doi.org/10.1103/PhysRevA.66.011601

    Article  ADS  Google Scholar 

  33. H. Pu, C.K. Law, S. Raghavan, J.H. Eberly, N.P. Bigelow, Spin-mixing dynamics of a spinor bose-einstein condensate. Phys. Rev. A 60, 1463–1470 (1999). https://doi.org/10.1103/PhysRevA.60.1463

    Article  ADS  Google Scholar 

  34. N.T. Phuc, Y. Kawaguchi, M. Ueda, Effects of thermal and quantum fluctuations on the phase diagram of a spin-1 \({}^{87}\)rb bose-einstein condensate. Phys. Rev. A 84, 043645 (2011). https://doi.org/10.1103/PhysRevA.84.043645

    Article  ADS  Google Scholar 

  35. Y. Kawaguchi, N.T. Phuc, P.B. Blakie, Finite-temperature phase diagram of a spin-1 bose gas. Phys. Rev. A 85, 053611 (2012). https://doi.org/10.1103/PhysRevA.85.053611

    Article  ADS  Google Scholar 

  36. K.M. Mittal, S.I. Mistakidis, P.G. Kevrekidis, P. Schmelcher, Many-body effects on second-order phase transitions in spinor bose-einstein condensates and breathing dynamics. Phys. Rev. A 102, 013302 (2020). https://doi.org/10.1103/PhysRevA.102.013302

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Pendse, A. Bhattacharyay, Effect of non-local interactions on the vortex solution in bose-einstein condensates. Eur. Phys. J. B 90, 244 (2017). https://doi.org/10.1140/epjb/e2017-80213-6 (ISSN 1745-2481)

    Article  ADS  MathSciNet  Google Scholar 

  38. T. Ohmi, K. Machida, Bose-einstein condensation with internal degrees of freedom in alkali atom gases. J. Phys. Soc. Jpn. 67(6), 1822–1825 (1998). https://doi.org/10.1143/JPSJ.67.1822

    Article  ADS  Google Scholar 

  39. L.P. Pitaevskii, S. Stringari, Oxford University Press. Bose-Einstein Condensation. International Series of Monographs on Physics. Clarendon Press, 2003. ISBN 9780198507192.

  40. C. Zhu, L. Dong, P. Han, Harmonically trapped atoms with spin-orbit coupling. J. Phys. B: At. Mol. Opt. Phys. 49(14), 145301 (2016). https://doi.org/10.1088/0953-4075/49/14/145301

    Article  ADS  Google Scholar 

  41. M. Edwards, K. Burnett, Numerical solution of the nonlinear schrödinger equation for small samples of trapped neutral atoms. Phys. Rev. A 51, 1382–1386 (1995). https://doi.org/10.1103/PhysRevA.51.1382

    Article  ADS  Google Scholar 

  42. P. Kaur, A. Roy, S. Gautam, Fortress: Fortran programs for solving coupled gross-pitaevskii equations for spin-orbit coupled spin-1 bose-einstein condensate. Comput. Phys. Commun. 259, 107671 (2021). https://doi.org/10.1016/j.cpc.2020.107671 (ISSN 0010-4655)

    Article  MathSciNet  Google Scholar 

  43. W. Bao, F.Y. Lim, Computing ground states of spin-1 bose-einstein condensates by the normalized gradient flow. SIAM J. Sci. Comput. 30(4), 1925–1948 (2008). https://doi.org/10.1137/070698488

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

PKK would like to thank the Council of Scientific and Industrial Research (CSIR), India for providing funding during this research. We would like to thank the anonymous reviewer for suggesting many changes which improved this article a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Projjwal Kanti Kanjilal.

Appendices

Variational approach for 1-D condensate

For a quasi-one-dimensional condensate the interaction parameter and the number densities can be scaled as,

$$\begin{aligned} c_0= & {} 2 \pi l^2_{yz} l_x\lambda ^{1D}_0\hbar \omega _x, \quad c_1=2 \pi l^2_{yz} l_x\lambda ^{1D}_1\hbar \omega _x, \end{aligned}$$
(65)
$$\begin{aligned} u_m= & {} 2 \pi l^2_{yz} l_x \lambda ^{1D}_0 n_m, \quad r=l_x\zeta ; \end{aligned}$$
(66)

where, \(l_x^2=\hbar /(m\omega _x)\), \(l_{yz}^2=\hbar /(m\omega _{yz})\), \(\omega _{yz}=\sqrt{\omega _y\omega _z}\) and N is the total number of particles in the condensate. As a result, the parameters \(\lambda ^{1D}_0\), \(\lambda ^{1D}_1\), \(\zeta \) and \(u_m\) become all dimensionless. Note that we are considering the condensate to be elongated in x direction as the harmonic trapping is far lesser than the geometric mean of the trapping frequencies along the other two direction, i.e., \(\omega _x<<\sqrt{\omega _{xy}}\)

Thus, the phase-stationary GP equation can be rewritten in dimensionless form as,

$$\begin{aligned}&\bigg \{ -\dfrac{1}{2}\dfrac{d^2}{d\zeta ^2}+\dfrac{1}{2}\zeta ^2+ u-\mu ' +\lambda '_1\left( u_1+u_{-1}+2 \sqrt{u_{-1}u_1}\cos \theta _r\right) \bigg \} \sqrt{u_0}=0, \end{aligned}$$
(67)
$$\begin{aligned}&\bigg \{ -\dfrac{1}{2}\dfrac{d^2}{d\zeta ^2}+\dfrac{1}{2}\zeta ^2+ u-\mu ' \pm \lambda '_1\left( u_1-u_{-1}\right) \bigg \}\sqrt{u_{\pm 1}} +\lambda '_1u_0\left( \sqrt{u_{\pm 1}} +\sqrt{u_{\mp 1}}\cos \theta _r\right) =0. \end{aligned}$$
(68)

where, \(\lambda _1''=\lambda ^{1D}_1/\lambda ^{1D}_0\) and \(\mu '=\mu /(\hbar \omega _x)\). The total number density u is the sum of all the sub-component density, i.e., \(u=u_1+u_0+u_{-1}\).

Note that the equations have similar form with those for 3-D except for the kinetic term and interaction parameters due to different scaling.

1.1 Method of variational approach for 1D:

Following the similar approach as of 3D condensate we assume the number densities,

  • \(u^{in}(\zeta )=f(\mu ',\zeta )\) for \(|\zeta |<|\zeta _0|\),

  • \(u^{out}(\zeta )=(a+c|\zeta |+d\zeta ^2) \exp (-\dfrac{\zeta ^2}{b})\) for \(|\zeta |\ge |\zeta _0|\);

given, the number density and its derivatives on both sides should be equal at \(\zeta =\zeta _0\). As discussed, the exact functional form \(f(\mu ',\zeta )\) is different for different stationary states and can be found from the solution of Eq. (67-68) by neglecting the kinetic energy term. Considering the symmetry of the problem, only the positive values for \(\zeta \) and \(\zeta _0\) are taken in the subsequent analysis to simplify notations.

1.1.1 Polar state:

Following the same procedure as in 3D condensate for polar state, the number density for the high density region is found out,

  • \(u^{in}_{pol}(\zeta )=\mu '-\zeta ^2/2\) for \(\zeta <\zeta _0\).

From the smooth matching condition at \(\zeta =\zeta _0\) we find all the coefficients a, b, c, d,

  • \(d =\exp {\Big (\dfrac{12 \zeta _0^2}{k}}\Big ) \dfrac{(k-12\mu ')\mu '-(k-20\mu ')\zeta _0^2-13 \zeta _0^4 }{2 \zeta _0^2 (-2 \mu ' + \zeta _0^2)},\)

  • \(b = \dfrac{k}{12}\),

  • \(c = 48 \zeta _0^3\exp {\Big (\dfrac{12 \zeta _0^2}{k}}\Big ) \dfrac{k-12(\mu '-\zeta _0^2/2)}{k^2},\)

  • \(a = \exp {\Big (\dfrac{12 \zeta _0^2}{k}}\Big )\dfrac{ 42\zeta _0^4-4(k-14 \mu '+22\zeta _0^2)\mu '+3k\zeta _0^2}{4 (2 \mu ' - \zeta _0^2)}, \)

where, \(k = 6 \mu ' - 9 \zeta _0^2 + \sqrt{36 \mu '^2 - 12 \mu ' \zeta _0^2 + 33 \zeta _0^4}\). To determine \(\mu '\), we use the total number conservation condition,

$$\begin{aligned} \int ^{\zeta _0}_0 u^{in}_{pol} d\zeta +\int ^{\infty }_{\zeta _0} u^{out}_{pol} d\zeta =\lambda ^{1D}_0 N. \end{aligned}$$
(69)

Following the integration and simplifying further we get the equation,

$$\begin{aligned} \begin{aligned} \dfrac{1}{16 \sqrt{3}k^2}&\Bigg [4 \sqrt{3}\zeta _0 \bigg (12 k \mu '^2 + 4 \mu ' (-5 k + 24 \mu ') \zeta _0^2- 216 \zeta _0^6 + (-53 k + 384 \mu ') \zeta _0^4 \bigg ) - \exp {\Bigg (\dfrac{12 \eta _0^2}{k1}}\Bigg ) \sqrt{k\pi }\bigg (-60 k \mu '^2 \\&\quad + 20 (7 k - 24 \mu ') \mu ' \zeta _0^2 + (29 k - 576 \mu ') \zeta _0^4 + 408 \zeta _0^6\bigg ) Erfc\Big (\dfrac{2 \sqrt{3} \zeta _0}{\sqrt{k}}\Big )\Bigg ] + \mu ' \zeta _0 - \zeta _0^3/6=\lambda ^{1D}_0N, \end{aligned} \end{aligned}$$
(70)

where, \(Erfc((2 \sqrt{3} \zeta _0)/\sqrt{k})\) is the complementary error function and k is defined earlier. Here \(\lambda ^{1D}_0\) is different from the 3D condensate due to scaling factor. Thus, \(\mu '\) can be estimated numerically for different values of \(\zeta _0\) and N. Though the procedure is same but the equation for determining \(\mu '\) is different from the 3D condensate.

The polar-state energy density can be written in these dimensionless parameters as (using Eqs. (65-66) in Eq. 9),

$$\begin{aligned} e_{pol}(u(\zeta ))=\dfrac{\hbar \omega _x }{2\lambda ^{1D}_0}\Big (-\sqrt{u(\zeta )}\dfrac{d^2}{d\zeta ^2}\sqrt{u(\zeta )}+\zeta ^2u(\zeta )+u^2(\zeta )\Big ). \end{aligned}$$
(71)

The total energy for polar state can be found out by integrating the energy density,

$$\begin{aligned} E_{pol}(\zeta _0)=\int _{0}^{\zeta _0}d\zeta e_{pol}(u^{in}(\zeta ))+\int _{\zeta _0}^{\infty }d\zeta e_{pol}(u^{out}(\zeta )). \end{aligned}$$
(72)

Now from the minima of the total energy with respect to \(\zeta _0\) fixes the total energy corresponding to the stationary state as well as the corresponding \(\mu '\).

1.1.2 Phase-matched state

Following a similar approach, the total density in the high density region (\(\zeta <\zeta _0\)) is written as,

$$\begin{aligned} u^{in}= \dfrac{\mu '-\zeta ^2/2}{(1+\lambda _1'')}, \end{aligned}$$
(73)

where the sub-component densities are

$$\begin{aligned} u^{in}_{\pm 1}=u^{in}/4, \qquad u^{in}_{0}=u^{in}/2. \end{aligned}$$
(74)

In the low density region where the kinetic term plays significant role, the sub-component densities are,

$$\begin{aligned}&u_{\pm 1}^{out}(\zeta )=\dfrac{(a+c\zeta +d\zeta ^2)}{4(1+\lambda _1'')} \exp \left( -\dfrac{\zeta ^2}{b}\right) , \end{aligned}$$
(75)
$$\begin{aligned}&u_{0}^{out}(\zeta )=\dfrac{(a+c\zeta +d\zeta ^2)}{2(1+\lambda _1'')} \exp \left( -\dfrac{\zeta ^2}{b}\right) , \end{aligned}$$
(76)

for \(\zeta \ge \zeta _0\), which follows from the same smooth matching condition. The parameters a, b, c and d has the same expressions as shown in case of polar state, but the \(\mu '\) and the matching point \(\zeta _0\) would be different for the PM state. Total number conservation for this stationary state in 1D leads to,

$$\begin{aligned} \begin{aligned} \dfrac{1}{16 \sqrt{3}k^2}&\Bigg [4 \sqrt{3}\zeta _0 \bigg (12 k \mu '^2 + 4 \mu ' (-5 k + 24 \mu ') \zeta _0^2- 216 \zeta _0^6 + (-53 k + 384 \mu ') \zeta _0^4 \bigg ) - \exp {\Bigg (\dfrac{12 \eta _0^2}{k1}}\Bigg ) \sqrt{k\pi }\bigg (-60 k \mu '^2 \\&\quad + 20 (7 k - 24 \mu ') \mu ' \zeta _0^2 + (29 k - 576 \mu ') \zeta _0^4 + 408 \zeta _0^6\bigg ) Erfc\Big (\dfrac{2 \sqrt{3} \zeta _0}{\sqrt{k}}\Big )\Bigg ] + \mu ' \zeta _0 - \zeta _0^3/6=(1+\lambda _1'')\lambda _0^{1D}N. \end{aligned}\nonumber \\ \end{aligned}$$
(77)

The parameter \(\mu '\) of the PM state can be computed from this equation for different values of N and \(\zeta _0\).

The energy density for PM state for 1-D harmonic confinement is,

$$\begin{aligned} e_{PM}=\dfrac{\hbar \omega _x}{2\lambda ^{1D}_0}\Big [-\sqrt{u(\zeta )}\dfrac{d^2}{d\zeta ^2}\sqrt{u(\zeta )}+\zeta ^2u(\zeta )+(1+\lambda _1'')u^2(\zeta )\Big ]. \end{aligned}$$
(78)

Now the minimization of the total energy (integrating the energy density) with respect to \(\zeta _0\) helps to fix the parameter \(\zeta _0\) and the total energy of the PM state.

Energy calculation using T-F approximation in dimensionless form

For an isotropic harmonic 3-D confinement, its easy to see from Eq. (51-52) that the polar state the number density varies as,

$$\begin{aligned} u^{TF}_{pol}=\mu ^{TF}_{pol}-\eta ^2/2. \end{aligned}$$
(79)

Similarly, for PM state, the total number density can be written as,

$$\begin{aligned} u^{TF}_{PM}=\dfrac{\mu ^{TF}_{PM}-\eta ^2/2}{(1+\lambda _1')}. \end{aligned}$$
(80)

Where, the T-F chemical potential can be written in terms of the corresponding T-F radius,

$$\begin{aligned} \mu ^{TF}_{PM(pol)}=\dfrac{1}{2}(\eta ^{TF}_{PM(pol)})^2. \end{aligned}$$
(81)

Now from the conservation of total number of condensate particles,

$$\begin{aligned} \int ^{\eta _{PM(pol)}^{TF}}_0 u^{TF}_{PM(pol)}\eta ^2 d\eta =\lambda _0 N/3, \end{aligned}$$
(82)

it is easy to get to the T-F radius. Thus the T-F energy can be calculated easily.

Similarly for 1D condensate,

$$\begin{aligned}&u^{TF}_{pol}=\mu ^{TF}_{pol}-\zeta ^2/2, \end{aligned}$$
(83)
$$\begin{aligned}&u^{TF}_{PM}=\dfrac{\mu ^{TF}_{PM}-\zeta ^2/2}{(1+\lambda _1'')}, \end{aligned}$$
(84)
$$\begin{aligned}&\mu ^{TF}_{PM(pol)}=\dfrac{1}{2}(\zeta ^{TF}_{PM(pol)})^2. \end{aligned}$$
(85)

To get the 1-D T-F radius we can use the total number conservation equation which for 1-D can be written as,

$$\begin{aligned} \int ^{\zeta _{PM(pol)}^{TF}}_0 u^{TF}_{PM(pol)} d\zeta =\lambda _0 N. \end{aligned}$$
(86)

The total energy in dimensionless form 1-D in polar state,

$$\begin{aligned} E^{TF}_{pol}=\int ^{\zeta ^{TF}_{pol}}_0\left[ \zeta ^2u(\zeta )+u^2(\zeta )\right] d\zeta , \end{aligned}$$
(87)

and the energy for PM state in T-F limit,

$$\begin{aligned} E^{TF}_{PM}=\int ^{\zeta ^{TF}_{PM}}_0\left[ \zeta ^2u(\zeta )+(1+\lambda _1'')u^2(\zeta )\right] d\zeta . \end{aligned}$$
(88)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanjilal, P.K., Bhattacharyay, A. A variational approach for the ground-state profile of a trapped spinor-BEC: a detailed study of phase transition in spin-1 condensate at zero magnetic field. Eur. Phys. J. Plus 137, 547 (2022). https://doi.org/10.1140/epjp/s13360-022-02729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02729-0

Navigation