Skip to main content
Log in

The synergetic relation of flexural strain behaviors and electrical signals of carbon nanotube-based polymer laminates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A predictable numerical relationship describing the electrical/mechanical behavior of the carbon nanotube (CNT)-based nanocomposite laminates can realize dynamic health monitoring for the composite components to provide vital information of service status. This paper outlined the parameter-based numerical equations by analyzing the electrical conduction mechanism of the CNT Bucky paper sensor from both the micro- and macro-levels. The CNT-based nanosensors cut from Bucky paper with 500 mg CNT concentration were selected to explore the electrical/mechanical responses relationships during the different flexural strain stages (50%, 80%, and 100% fraction of the fracture strain). Subsequently, the desirable agreement between the experimental curve and the fitting curve obtained from a new series of CNT-based composite specimens demonstrated the validity, suitability, and flexibility of this fitting curve. Finally, the sensors with the reasonable CNT content, film thickness, and dense conductive networks have been selected as suitable sensors for monitoring the mechanical behavior of the composite laminates, which offered the adequate bonding of the fiber–resin–CNT interface to provide higher piezoresistive sensitivity and stable resistance changing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data sets supporting the results of this article are included within the article.]

References

  1. M. Norkhairunnisa, A. Azizan, M. Mariatti, H. Ismail, L. Sim, Thermal stability and electrical behavior of polydimethylsiloxane nanocomposites with carbon nanotubes and carbon black fillers. J. Compos. Mater. 46(8), 903–910 (2012)

    Article  ADS  Google Scholar 

  2. S. Laflamme, A. Downey, F. Ubertini, A. D'Alessandro, AL Materazzi, Novel nanocomposite clay brick for strain sensing in structural masonry. IEEE International Conference on Environment & Electrical Engineering & IEEE Industrial & Commercial Power Systems Europe IEEE (2017)

  3. J.J. Ku-Herrera, F. Avilés, Cyclic tension and compression piezoresistivity of carbon nanotube/ vinyl ester composites in the elastic and plastic regimes. Carbon 50(7), 2592–2598 (2012)

    Article  Google Scholar 

  4. Y.F. Zhu, L. Zhou, Q.S. Jiang, One-dimensional ZnO nanowires grown on three-dimensional scaffolds for improved photocatalytic activity. Ceram. Int. 46(1), 1158 (2019)

    Article  Google Scholar 

  5. H. Aguilar-Bolados, M. Yazdani-Pedram, A. Contreras-Cid, M.A. Lopez-Manchado, A. May-Pat, F. Aviles, Influence of the morphology of carbon nanostructures on thepiezoresistivity of hybrid natural rubber nanocomposites. Compos. B Eng. 109, 147–154 (2017)

    Article  Google Scholar 

  6. L. Guadagno, M. Raimondo, L. Vertuccio, M. Mauro, G. Guerra, K. Lafdi et al., Optimization of graphene-based materials outperforming host epoxy matrices. RSC Adv. 5(46), 36969–36978 (2015)

    Article  ADS  Google Scholar 

  7. S. Wu, R.B. Ladani, J. Zhang, K. Ghorbani, X. Zhang, A.P. Mouritz et al., Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 8, 24853–24861 (2016)

    Article  Google Scholar 

  8. A. Sanli, A. Benchirouf, C. Müller, O. Kanoun, Piezoresistive performance characterization of strain sensitive multi-walled carbon nanotube-epoxy nanocomposites. Sens. Actuators A Phys 254, 61–68 (2017)

    Article  Google Scholar 

  9. L. Shen, L. Liu, W. Wang, Y. Zhou, In situ self-sensing of delamination initiation and growth in multi-directional laminates using carbon nanotube interleaves. Compos. Sci. Technol. 167, 141–147 (2018)

    Article  Google Scholar 

  10. M.Y. Chao, Y.G. Wang, D. Ma, X.X. Wu, W.X. Zhang, L.Q. Zhang et al., Wearable MXene nanocomposites-based strain sensor with tile-like stacked hierarchical microstructure for broad-range ultrasensitive sensing. ACS Appl. Mater Interfaces 78, 105187–105196 (2020)

    Google Scholar 

  11. H. Chu, Z. Zhang, Y. Liu, J. Leng, Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing. Carbon 66, 154–163 (2014)

    Article  Google Scholar 

  12. Q. Song, F. Ye, X. Yin, W. Li, B. Wei, Carbon nanotube–multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29(31), 1701583 (2017)

    Article  Google Scholar 

  13. B. Wang, Y. Duan, Z. Xin, X. Yao, D. Abliz, G. Ziegmann, Fabrication of an enriched graphene surface protection of carbon fiber/epoxy composites for lightning strike via a percolating-assisted resin film infusion method. Compos. Sci. Technol. 158, 51–60 (2018)

    Article  Google Scholar 

  14. R. Zhang, P.F. Pan, Q. Dai, X. Yang, Z. Yang, J. Wei et al., Sensitive and wearable carbon nanotubes/ carbon black strain sensors with wide linear ranges for human motion monitoring. J. Mater. Sci. Mater. Electron. 29(7), 5589–5596 (2018)

    Article  Google Scholar 

  15. H. Songjia, L. Chunrui, X. Huihua, Y. Dongyuan, Y. Kanghong, Z. Huanliang et al., Multiscale nanowire-microfluidic hybrid strain sensors with high sensitivity and stretchability. Npj Flex. Electron. 2(1), 16 (2018)

    Article  Google Scholar 

  16. Y. He, D. Wu, M. Zhou, Y. Zheng, T.F. Wang, C. Lu et al., Wearable strain sensors based on a porous polydimethylsiloxane hybrid with carbon nanotubes and graphene. ACS Appl. Mater. Interfaces 13(13), 15572–15583 (2021)

    Article  Google Scholar 

  17. Z.X. Jia, Z.J. Li, S.F. Ma, W.Q. Zhang, Y.J. Chen, Y.F. Luo et al., Constructing conductive titanium carbide nanosheet (MXene) network on polyurethane/polyacrylonitrile fibre framework for flexible strain sensor. J. Colloid. Interf. Sci. 584(12), 1–10 (2021)

    Article  ADS  Google Scholar 

  18. X. Wang, H. Sun, X. Yue, Y. Yu, G. Zheng, K. Dai et al., A highly stretchable carbon nanotubes/ thermoplastic polyurethane fiber-shaped strain sensor with porous structure for human motion monitoring. Compos. Sci. Technol. 168(10), 126–132 (2018)

    Article  Google Scholar 

  19. G. Yin, N. Hu, Y. Karube, Y. Liu, Y. Li, H. Fukunaga, A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity. J. Compos. Mater. 11(12), 10691–10723 (2011)

    Google Scholar 

  20. Y. Zheng, Y. Li, K. Dai, M. Liu, K. Zhou, G. Zheng et al., Conductive thermoplastic polyurethane composites with tunable piezoresistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part A Appl. Sci. Manuf. 101, 41–49 (2017)

    Article  Google Scholar 

  21. N.T. Selvan, S.B. Eshwaran, A. Das, K.W. Stöckelhuber, S. Wießner, P. Pötschke et al., Piezoresistive natural rubber-multiwall carbon nanotube nanocomposite for sensor applications. Sens. Actuators A Phys. 239, 102–113 (2016)

    Article  Google Scholar 

  22. G. Yang, L. Liu, Z. Wu, Improved strain sensing capability of nano-carbon free-standing buckypapers based strain gauges. Smart Mater. Struct. 28(6), 065009 (2019)

    Article  ADS  Google Scholar 

  23. J. Wen, Z. Xia, F. Choy, Damage detection of carbon fiber reinforced polymer composites via electrical resistance measurement. Compos. B Eng. 42(1), 77–86 (2011)

    Article  Google Scholar 

  24. C. Zhao, Z.D. Xia, X.L. Wang, J.K. Nie, H. Pei, S.F. Zhao, 3D-printed highly stable flexible strain sensor based on silver-coated-glass fiber-filled conductive silicon rubber. Mater. Design 193, 108788–108798 (2020)

    Article  Google Scholar 

  25. E.F.R.D. Costa, A.A. Skordos, I.K. Partridge, A. Rezai, RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites. Compos. Part A Appl. Sci. Manuf. 43(4), 593–602 (2012)

    Article  Google Scholar 

  26. C.L. Han, G.D. Wang, N. Li, M. Wang, X.L. Liu, J.H. MA, Study on interlaminar performance of CNTs/epoxy film enhanced GFRP under low-temperature cycle. Compos. Struct. 272(7), 114191–114202 (2021)

    Article  Google Scholar 

  27. G.D. Wang, N. Li, S.K. Melly, T. Peng, Y.C. Li, Q.D. Zhao et al., Monitoring the drilling process of GFRP laminates with carbon nanotube buckypaper sensor. Compos. Struct. 208, 114–126 (2019)

    Article  Google Scholar 

  28. I. Gaztelumendi, M. Chapartegui, R. Seddon, F. Sonia, F. Pons, J. Cinquin, Enhancement of electrical conductivity of composite structures by integration of carbon nanotubes via bulk resin and/or buckypaper films. Compos. B Eng. 122, 31–40 (2017)

    Article  Google Scholar 

  29. L. Liu, J.W. Wu, Y.X. Zhou, Enhanced delamination initiation stress and monitoring sensitivity of quasi-isotropic laminates under in-plane tension by interleaving with CNT buckypaper. Compos. Part A Appl. Sci. Manuf. 89, 10–17 (2016)

    Article  Google Scholar 

  30. L.F. Ma, W. Yang, Y.S. Wang, H. Chen, Y.F. Xing, J.C. Wang et al., Multi-dimensional strain sensor based on carbon nanotube film with aligned conductive networks. Compos. Sci. Technol. 165, 190–197 (2018)

    Article  Google Scholar 

  31. D. Lee, H.P. Hong, C.J. Lee, C.W. Park, N.K. Min, Microfabrication and characterization of spray-coated single-wall carbon nanotube film strain gauges. Nanotechnology 22(45), 455301 (2011)

    Article  ADS  Google Scholar 

  32. Y. Lu, M.C. Biswas, Z.H. Guo, J.-W. Jeon, E.K. Wujcik, Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 123, 167–177 (2019)

    Article  Google Scholar 

  33. L. Vertuccio, L. Guadagno, G. Spinelli, P. Lamberti, V. Tucci, S. Russo, Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures. Compos. B Eng. 107, 192–202 (2016)

    Article  Google Scholar 

  34. F. Panozzo, M. Zappalorto, M. Quaresimin, Analytical model for the prediction of the piezoresistive behavior of CNT modified polymers. Compos. B Eng. 109, 53–63 (2017)

    Article  Google Scholar 

  35. Y. Kuronuma, T. Takeda, Y. Shindo, F. Narita, Z. Wei, Electrical resistance-based strain sensing in carbon nanotube/polymer composites under tension: analytical modeling and experiments. Compos. Sci. Technol. 72(14), 1678–1682 (2012)

    Article  Google Scholar 

  36. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)

    Article  ADS  Google Scholar 

  37. G.R. Ruschau, S. Yoshikawa, R.E. Newnham, Resistivities of conductive composites. J. Appl. Phys. 72(3), 953–959 (1992)

    Article  ADS  Google Scholar 

  38. T. Takeda, Y. Shindo, Y. Kuronuma, F. Narita, Modeling and characterization of the electrical conductivity of carbon nanotube-based polymer composites. Polym 52(17), 3852–3856 (2011)

    Article  Google Scholar 

  39. G. Spinelli, P. Lamberti, V. Tucci, V. Luigi, G. Liberata, Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring. Compos. B Eng. 145, 90–99 (2018)

    Article  Google Scholar 

  40. N.D. Alexopoulos, C. Bartholome, P. Poulin, Z. Marioli-Riga, Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Compos. Sci. Technol. 70(2), 260–271 (2010)

    Article  Google Scholar 

  41. J.M. Gere, B.J. Goodno. Mechanics of materials. 8th edition. Stanford University (2012)

  42. M. Amjadi, K.U. Kyung, I. Park, M. Sitti, Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26(11), 1678–1698 (2016)

    Article  Google Scholar 

  43. G. Shi, Z. Zhao, J.H. Pai, I. Lee, L. Zhang, C. Stevenson et al., Highly sensitive, wearable, durable strain sensors and stretchable conductors using graphene/silicon rubber composites. Adv. Funct. Mater. 26(42), 7614–7625 (2016)

    Article  Google Scholar 

  44. C. Bonavolontà, C. Camerlingo, G. Carotenuto, S.D. Nicola, A. Longo, C. Meola et al., Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor applications. Sens. Actuators A Phys. 252, 26–34 (2016)

    Article  Google Scholar 

  45. M. Wang, B. Li, G.D. Wang, Q.D. Zhao, X.L. Liu, High-sensitive flexural sensors for health monitoring of composite materials using embedded carbon nanotube (CNT) buckypaper. Compos Struct 261, 113280 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Shenyang Aerospace University and Liaoning Key Laboratory of Advanced Polymer Matrix Composites Manufacturing Technology for supporting the materials, equipment, and other research activities.

Funding

This work was supported by Special Zone of National Defense Science and Technology Innovation: 18-H863-31-ZD-002–001-20 and Foundation of Liaoning Province Education Administration No. JYT2020013.

Author information

Authors and Affiliations

Authors

Contributions

CLH was involved in writing—original draft preparation, software, data curation, writing—original draft preparation, writing—review and editing, validation, investigation; ALZ contributed to methodology, supervision; G-DW was involved in conceptualization, methodology; NL contributed to conceptualization, supervision; MW, LW and XLL were involved in Validation.

Corresponding authors

Correspondence to Ai Li Zou, Gong-Dong Wang or Nan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C.L., Zou, A.L., Wang, GD. et al. The synergetic relation of flexural strain behaviors and electrical signals of carbon nanotube-based polymer laminates. Eur. Phys. J. Plus 137, 462 (2022). https://doi.org/10.1140/epjp/s13360-022-02641-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02641-7

Navigation