Skip to main content
Log in

Quantum squeezing in coupled waveguide networks with quadratic and qubic nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study demonstrates that coupled waveguide networks with quadratic and cubic nonlinearity mediated by a linear waveguide allow for the generation, enhancement and transmission of squeezed light on a single-mode and multi-mode basis. The time evolution of the density matrix could be mapped to the corresponding Fokker–Planck equation of a classical quasiprobability distribution using the positive P representation of the phase space. Using the Langevin stochastic equation, we examine the scenarios where the system functions at varied evanescent coupling profiles, coupled modes interaction, competing nonlinear response and ultimately when the second harmonic generation and self-action Kerr interaction are present or absent. We analyze the behavior of squeezing and how the evolution is affected by the presence of coupled nonlinearity. We show that the interplay of linear and nonlinear effects in coherently driven coupled waveguide networks has the potential to be a valuable source of squeezed light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. M. Xin, W.S. Leong, Z. Chen, S.-Y. Lan, An atom interferometer inside a hollow-core photonic crystal fiber. Sci. Adv. 4(1), e1701723 (2018). https://doi.org/10.1126/sciadv.1701723

    Article  Google Scholar 

  2. M. Xin, W.S. Leong, Z. Chen, S.-Y. Lan, “Transporting Long-Lived Quantum Spin Coherence in a Photonic Crystal Fiber. Phys. Rev. Lett. 122(16), 163901 (2019). https://doi.org/10.1103/PhysRevLett.122.163901

    Article  Google Scholar 

  3. W.S. Leong, M. Xin, C. Huang, Z. Chen, S.-Y. Lan, Long light storage time in an optical fiber. Phys. Rev. Res. 2(3), 033320 (2020). https://doi.org/10.1103/PhysRevResearch.2.033320

    Article  Google Scholar 

  4. W.S. Leong, M. Xin, Z. Chen, S. Chai, Y. Wang, S.-Y. Lan, Large array of Schrödinger cat states facilitated by an optical waveguide. Nat. Commun. 11(1), 5295 (2020). https://doi.org/10.1038/s41467-020-19030-2

    Article  Google Scholar 

  5. A.S. Solntsev et al., Generation of nonclassical biphoton states through cascaded quantum walks on a nonlinear chip. Phys. Rev. X 4(3), 031007 (2014). https://doi.org/10.1103/PhysRevX.4.031007

    Article  Google Scholar 

  6. D. Barral et al., Continuous-variable entanglement of two bright coherent states that never interacted. Phys. Rev. A 96(5), 053822 (2017). https://doi.org/10.1103/PhysRevA.96.053822

    Article  Google Scholar 

  7. D. Barral, K. Bencheikh, J.A. Levenson, N. Belabas, Scalable multimode entanglement based on efficient squeezing of propagation eigenmodes. Phys. Rev. Res. 3(1), 013068 (2021). https://doi.org/10.1103/PhysRevResearch.3.013068

    Article  Google Scholar 

  8. B. Brecht, D.V. Reddy, C. Silberhorn, M.G. Raymer, Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X 5(4), 041017 (2015). https://doi.org/10.1103/PhysRevX.5.041017

    Article  Google Scholar 

  9. D. Barral et al., Versatile photonic entanglement synthesizer in the spatial domain. Phys. Rev. Appl. 14(4), 044025 (2020). https://doi.org/10.1103/PhysRevApplied.14.044025

    Article  MathSciNet  Google Scholar 

  10. S. Mukherjee, D. Mogilevtsev, G.Y. Slepyan, T.H. Doherty, R.R. Thomson, N. Korolkova, Dissipatively coupled waveguide networks for coherent diffusive photonics. Nat. Commun. 8(1), 1909 (2017). https://doi.org/10.1038/s41467-017-02048-4

    Article  Google Scholar 

  11. F. El-Orany, M.S. Abdalla, J. Peřina, Quantum properties of the codirectional three-mode Kerr nonlinear coupler. Eur. Phys. J. D 33, 453–463 (2005). https://doi.org/10.1140/epjd/e2005-00048-2

    Article  Google Scholar 

  12. R. Julius, A.-B.M.A. Ibrahim, M.S.M. Deni, B. Umarov, Squeezing in four-mode Kerr nonlinear coupler via phase space representation. AIP Conf. Proc. 1557(1), 169–173 (2013). https://doi.org/10.1063/1.4823897

    Article  Google Scholar 

  13. R. Julius, A.-B.M.A. Ibrahim, M.S.M. Deni, Quantum state generation in a four-mode Kerr nonlinear directional coupler. Laser Phys. 24(3), 035202 (2014). https://doi.org/10.1088/1054-660X/24/3/035202

    Article  Google Scholar 

  14. R. Julius, A.-B.M.A. Ibrahim, P.K. Choudhury, H. Eleuch, On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler. Chin. Phys. B 27(11), 114206 (2018). https://doi.org/10.1088/1674-1056/27/11/114206

    Article  Google Scholar 

  15. R. Julius, A.-B.M.A. Ibrahim, M.K. Abd-Rahman, P.K. Choudhury, Quantum dynamics of a four-channel Kerr nonlinear directional coupler. Opt. Rev. 25(5), 563–570 (2018). https://doi.org/10.1007/s10043-018-0448-x

    Article  Google Scholar 

  16. A. Aspuru-Guzik, P. Walther, Photonic quantum simulators. Nat. Phys. 8(4), 285–291 (2012). https://doi.org/10.1038/nphys2253

    Article  Google Scholar 

  17. H. Tang et al., Experimental two-dimensional quantum walk on a photonic chip. Sci. Adv. (2018). https://doi.org/10.1126/sciadv.aat3174

    Article  Google Scholar 

  18. A. Rai, G.S. Agarwal, J.H.H. Perk, Transport and quantum walk of nonclassical light in coupled waveguides. Phys. Rev. A 78(4), 042304 (2008). https://doi.org/10.1103/PhysRevA.78.042304

    Article  Google Scholar 

  19. A. Peruzzo et al., Quantum Walks of Correlated Photons. Science 329(5998), 1500–1503 (2010). https://doi.org/10.1126/science.1193515

    Article  Google Scholar 

  20. S. Longhi, Bloch oscillations and Zener tunneling of photon pairs. Spie Newsroom (2009). https://doi.org/10.1117/2.1200906.1716

    Article  Google Scholar 

  21. B.M. Rodríguez-Lara, Propagation of non-classical states of light through one-dimensional photonic lattices. J. Opt. Soc. Am. B 31(4), 878 (2014). https://doi.org/10.1364/JOSAB.31.000878

    Article  Google Scholar 

  22. M. Mallon, M. Reid, M. Olsen, Bright continuous-variable entanglement from the quantum optical dimer. J. Phys. B At. Mol. Opt. Phys. (2007). https://doi.org/10.1088/0953-4075/41/1/015501

    Article  Google Scholar 

  23. M. Bache, Y. Gaididei, P. Christiansen, Nonclassical statistics of intracavity coupled χ (2) waveguides: the quantum optical dimer. Phys. Rev. A. (2002). https://doi.org/10.1103/PhysRevA.67.043802

    Article  Google Scholar 

  24. R. Julius, A.-B.M.A. Ibrahim, P.K. Choudhury, H. Eleuch, Quantum states generation in multichannel directional coupler with second-order nonlinearity. Optik 186, 212–220 (2019). https://doi.org/10.1016/j.ijleo.2019.03.027

    Article  Google Scholar 

  25. R. Julius, A.-B.M.A. Ibrahim, H. Eleuch, P.K. Choudhury, Sub-Poissonian photon squeezing and entanglement in optical chain second harmonic generation. J. Mod. Opt. 66(10), 1129–1138 (2019). https://doi.org/10.1080/09500340.2019.1603408

    Article  MathSciNet  Google Scholar 

  26. S.L.W. Midgley, A.J. Ferris, M.K. Olsen, Asymmetric Gaussian steering: when Alice and Bob disagree. Phys. Rev. A 81(2), 022101 (2010). https://doi.org/10.1103/PhysRevA.81.022101

    Article  Google Scholar 

  27. W. Leonski, A. Miranowicz, Kerr nonlinear coupler and entanglement. J. Opt. B Quantum Semiclassical Opt. 6, S37–S42 (2004). https://doi.org/10.1088/1464-4266/6/3/007

    Article  Google Scholar 

  28. F. Lenzini et al., Integrated photonic platform for quantum information with continuous variables. Sci. Adv. 4(12), eaat331 (2018). https://doi.org/10.1126/sciadv.aat9331

    Article  Google Scholar 

  29. D. Barral, K. Bencheikh, N. Belabas, J.A. Levenson, Zero supermode-based multipartite entanglement in χ(2) nonlinear waveguide arrays. Phys. Rev. A 99(5), 051801 (2019). https://doi.org/10.1103/PhysRevA.99.051801

    Article  Google Scholar 

  30. X. Xu, X. Xu, L. Ren, L. Shi, X. Zhang, Discrete optics in optomechanical waveguide arrays. Opt. Lett. 45(18), 4976–4979 (2020). https://doi.org/10.1364/OL.394959

    Article  Google Scholar 

  31. M. V.o, M.V.O, S. L. A, Quantum correlations of solitons in nonlinear Kerr waveguide arrays. IEEE Conf. Proc., vol. 2020, nol. ICLO. 1, 2020.

  32. E. Zhu, C. Zhao, H. Li, Frequency-domain model of optical frequency-comb generation in optical resonators with second- and third-order nonlinearities. Phys. Rev. A 102(5), 053508 (2020). https://doi.org/10.1103/PhysRevA.102.053508

    Article  Google Scholar 

  33. M. Olsen, C. Chianca, K. Dechoum, Two-well atomic Bose-Hubbard analogues of optical cavities. 2016.

  34. M.K. Olsen, Pseudo-steady-state non-Gaussian Einstein-Podolsky-Rosen steering of massive particles in pumped and damped Bose-Hubbard dimers. Phys. Rev. A 95(2), 023623 (2017). https://doi.org/10.1103/PhysRevA.95.023623

    Article  Google Scholar 

  35. M. Olsen, T. Neely, A. Bradley, Mesoscopic dynamical differences from quantum state preparation in a bose-hubbard trimer. Phys. Rev. Lett. (2017). https://doi.org/10.1103/PhysRevLett.120.230406

    Article  Google Scholar 

  36. C. Chianca, M. Olsen, Quantum behaviour of open pumped and damped Bose-Hubbard trimers. Laser Phys. (2017). https://doi.org/10.1088/1555-6611/aa914f

    Article  Google Scholar 

  37. C. Chianca, M. Olsen, Quantum behaviour of pumped and damped triangular Bose Hubbard systems. Opt. Commun. (2017). https://doi.org/10.1016/j.optcom.2017.07.075

    Article  Google Scholar 

  38. J.K. Kalaga, A. Kowalewska-Kudłaszyk, M.W. Jarosik, R. Szczȩśniak, W. Leoński, Enhancement of the entanglement generation via randomly perturbed series of external pulses in a nonlinear Bose-Hubbard dimer. Nonlinear Dyn. 97(2), 1619–1633 (2019). https://doi.org/10.1007/s11071-019-05084-5

    Article  MATH  Google Scholar 

  39. S. Rojas-Rojas, E. Barriga, C. Muñoz, P. Solano, C. Hermann-Avigliano, Manipulation of multimode squeezing in a coupled waveguide array. Phys. Rev. A 100(2), 023841 (2019). https://doi.org/10.1103/PhysRevA.100.023841

    Article  Google Scholar 

  40. M.K. Olsen, A.S. Bradley, Numerical representation of quantum states in the positive-P and Wigner representations. Opt. Commun. 282(19), 3924–3929 (2009). https://doi.org/10.1016/j.optcom.2009.06.033

    Article  Google Scholar 

  41. A. Gilchrist, C. Gardiner, P. Drummond, Positive P representation: application and validity. Phys. Rev. A 55, 3014 (1997). https://doi.org/10.1103/PhysRevA.55.3014

    Article  Google Scholar 

  42. M. Olsen, V. Kruglov, M. Collett, Effects of χ(3) nonlinearities in second-harmonic generation. Phys. Rev. A (2001). https://doi.org/10.1103/PhysRevA.63.033801

    Article  Google Scholar 

  43. V. Kruglov, M. Olsen, Effects of χ(3) nonlinearities in traveling-wave second-harmonic generation. Phys. Rev. A (2001). https://doi.org/10.1103/PhysRevA.64.053802

    Article  Google Scholar 

  44. M. Schleier-Smith, Squeezing out higher precision. Science 364(6446), 1137–1138 (2019). https://doi.org/10.1126/science.aax0143

    Article  Google Scholar 

  45. S. Takeda, A. Furusawa, Perspective: toward large-scale fault-tolerant universal photonic quantum computing. APL Photon 4(6), 060902 (2019). https://doi.org/10.1063/1.5100160

    Article  Google Scholar 

  46. K. Fukui, A. Tomita, A. Okamoto, K. Fujii, High-threshold fault-tolerant quantum computation with analog quantum error correction. Phys. Rev. X 8(2), 021054 (2018). https://doi.org/10.1103/PhysRevX.8.021054

    Article  Google Scholar 

  47. B.E. Anderson et al., Phase sensing beyond the standard quantum limit with a truncated SU(1,1) interferometer. Optica 4(7), 752 (2017). https://doi.org/10.1364/OPTICA.4.000752

    Article  Google Scholar 

  48. F. Wen et al., Triple-mode squeezing with dressed six-wave mixing. Sci. Rep. 6(1), 25554 (2016). https://doi.org/10.1038/srep25554

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Geran Khas Insentif Penyelidikan Perak (GKIPP) with Grant Number 900-KPK/PJI/GKIPP/01(0010/2020) received from the Universiti Teknologi MARA, Perak Branch, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Julius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Julius, R., Alias, A.N. & Halim, M.S.A. Quantum squeezing in coupled waveguide networks with quadratic and qubic nonlinearity. Eur. Phys. J. Plus 137, 91 (2022). https://doi.org/10.1140/epjp/s13360-021-02302-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02302-1

Navigation