Skip to main content
Log in

Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Plasmas are of current interest, supporting some nonlinear phenomena. In this paper, we investigate a three-component coupled derivative nonlinear Schrödinger system for a certain plasma. With respect to the complex envelopes of three fields in the plasma, we construct a Lax pair and obtain some soliton and breather solutions. Based on the soliton solutions, one bell-shaped soliton is presented. We present the interactions between/among the two/three bell-shaped solitons. Widths and velocities of the two solitons are unchanged after the interactions via the asymptotic analysis. When the two/three solitons have the same velocity, bound state of the two/three solitons is formed. Based on breather solutions, interaction between the Akhmediev breather (AB) and soliton, and interaction between the AB and breather-like soliton are shown. We present the interaction between the Kuznetsov–Ma breather and breather-like soliton. We investigate the modulation instability for the plane wave solutions via the linear stability analysis: If the imaginary part of \(\Omega \) exists, the modulation instability appears, where \(\Omega \) is the frequency of perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

References

  1. R.E. Tolba, Eur. Phys. J. Plus 136, 138 (2021)

    Article  Google Scholar 

  2. A. Saha, P. Chatterjee, S. Banerjee, Eur. Phys. J. Plus 135, 801 (2021)

    Article  Google Scholar 

  3. N. Cheemaa, A.R. Seadawy, S. Chen, Eur. Phys. J. Plus 134, 119 (2019)

    Article  Google Scholar 

  4. B.S. Wettervik, M. Marklund, A. Gonoskov, Phys. Plasmas 26, 053101 (2019)

    Article  ADS  Google Scholar 

  5. D.Y. Yang, B. Tian, M. Wang, X. Zhao, W.R. Shan, Y. Jiang, Nonlinear Dyn. (2022) (in press). https://doi.org/10.1007/s11071-021-06886-2

  6. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Comput. Math. 20, 421 (2021)

  7. Y. Shen, B. Tian, X.T. Gao, Chin. J. Phys. (2022) (in press). https://doi.org/10.1016/j.cjph.2021.11.025

  8. D. Wang, Y.T. Gao, C.C. Ding, C.Y. Zhang, Commun. Theor. Phys. 72, 115004 (2020)

  9. X.Y. Gao, Y.J. Guo, W.R. Shan, H.M. Yin, X.X. Du, D.Y. Yang, Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2022)

  10. R.C. Mancini, T.E. Lockard, D.C. Mayes, I.M. Hall, Phys. Rev. E 101, 051201 (2020)

    Article  ADS  Google Scholar 

  11. X.Y. Gao, Y.J. Guo, W.R. Shan, Y.Q. Yuan, C.R. Zhang, S.S. Chen, Appl. Math. Lett. 111, 106627 (2021)

    Article  Google Scholar 

  12. V. Jatenco-Pereira, Phys. Scr. 60, 113 (2021)

    Google Scholar 

  13. Z. Du, T. Xu, S. Ren, Nonlinear Dyn. 104, 683 (2021)

    Article  Google Scholar 

  14. D.Y. Yang, B. Tian, C.C. Hu, S.H. Liu, W.R. Shan, Y. Jiang, Wave. Random Complex (2022) in press, https://doi.org/10.1080/17455030.2021.1983237

  15. L. Hu, Y.T. Gao, T.T. Jia, G.F. Deng, L. Q. Li, Z. Angew. Math. Phys. 72, 75 (2021)

  16. F.Y. Liu, Y.T. Gao, X. Yu, L.Q. Li, C.C. Ding, D.Wang, Eur. Phys. J. Plus 136, 656 (2021)

  17. D. Wang, Y.T. Gao, X. Yu, L.Q. Li, T.T. Jia, Nonlinear Dyn. 104, 1519 (2021)

  18. D. Wang, Y.T. Gao, J.J. Su, C.C. Ding, Mod. Phys. Lett. B 34, 2050336 (2020)

  19. M. Wang, B. Tian, C.C. Hu, S.H. Liu, Appl. Math. Lett. 119, 106936 (2021)

  20. M. Wang, B. Tian, T. Y. Zhou, Chaos Solitons Fract. 152, 111411 (2021)

  21. T.Y. Zhou, B. Tian, Y.Q. Chen, Y. Shen, Nonlinear Dyn. (2022) in press. https://doi.org/10.1007/s11071-022-07211-1

  22. Z. Du, Y.P. Ma, Appl. Math. Lett. 116, 106999 (2021)

    Article  Google Scholar 

  23. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 120, 107161 (2021)

    Article  Google Scholar 

  24. Y.J. Feng, Y.T. Gao, T.T. Jia, L.Q. Li, Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  ADS  Google Scholar 

  25. T.Y. Zhou, B. Tian, S.S. Chen, C.C. Wei, Y. Q. Chen, Mod. Phys. Lett. B 35, 2150421 (2021)

  26. X.Y. Gao, Y.J. Guo, W.R. Shan, Eur. Phys. J. Plus 136, 893 (2021)

  27. Y. Shen, B. Tian, Appl. Math. Lett. 122, 107301 (2021)

  28. D.Y. Yang, B. Tian, Q.X. Qu, C.R. Zhang, S.S. Chen, C.C. Wei, Chaos Solitons Fract. 150, 110487 (2021)

  29. M. Wang, B. Tian, Wave. Random Complex (2022) (in press). https://doi.org/10.1080/17455030.2021.1986649

  30. Y. Shen, B. Tian, T.Y. Zhou, Eur. Phys. J. Plus 136, 572 (2021)

  31. M. Wang, B. Tian, Eur. Phys. J. Plus 136, 1002 (2021)

  32. Y.X. Ma, B. Tian, Q.X. Qu, C.C. Wei, X. Zhao, Chin. J. Phys. 73, 600 (2021)

  33. X.Y. Gao, Y.J. Guo, W.R. Shan, Rom. Rep. Phys. 73, 111 (2021)

  34. X.T. Gao, B. Tian, Y. Shen, C.H. Feng, Chaos Solitons Fract. 151, 111222 (2021)

  35. L. Hu, Y.T. Gao, S.L. Jia, J.J. Su, G.F. Deng, Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  ADS  Google Scholar 

  36. X.T. Gao, B. Tian, Appl. Math. Lett. (2022) in press, https://doi.org/10.1016/j.aml.2021.107858

  37. X.H. Wu, Y.T. Gao, X. Yu, C.C. Ding, F.Y. Liu, T.T. Jia, Mod. Phys. Lett. B (2022) in press, Ms. No. MPLB-D-21-00411

  38. C.C. Ding, Y.T. Gao, G.F. Deng, D. Wang, Chaos Solitons Fract. 133, 109580 (2020)

    Article  Google Scholar 

  39. F.Y. Liu, Y.T. Gao, X. Yu, L. Hu, X.H. Wu, Chaos Solitons Fract. 152, 111355 (2021)

  40. D.Y. Yang, B. Tian, H.Y. Tian, Y.Q. Chen, W.R. Shan, Y. Jiang, Optik 247, 166815 (2021)

  41. X.Y. Gao, Y.J. Guo, W.R. Shan, Chaos Solitons Fract. 147, 110875 (2021)

    Article  Google Scholar 

  42. X.T. Gao, B. Tian, C.H. Feng, Chin. J. Phys. (2022) in press, https://doi.org/10.1016/j.cjph.2021.11.019

  43. X.Y. Gao, Y.J. Guo, W.R. Shan, Commun. Theor. Phys. 72, 095002 (2020)

  44. Y. Shen, B. Tian, C.D. Cheng, T.Y. Zhou, Eur. Phys. J. Plus 136, 1159 (2021)

  45. Y. Shen, B. Tian, S.H. Liu, Phys. Lett. A 405, 127429 (2021)

  46. Y.X. Ma, B. Tian, Q.X. Qu, D.Y. Yang, Y.Q. Chen, Int. J. Mod. Phys. B 35, 2150108 (2021)

  47. L.Q. Li, Y.T. Gao, L. Hu, T.T. Jia, C.C. Ding, Y.J. Feng, Nonlinear Dyn. 100, 2729 (2020)

    Article  Google Scholar 

  48. C.C. Ding, Y.T. Gao, L. Hu, G.F. Deng, C.Y. Zhang, Chaos Solitons Fract. 142, 110363 (2021)

    Article  Google Scholar 

  49. F.Y. Liu, Y.T. Gao, X. Yu, C.C. Ding, G.F. Deng, T.T. Jia, Chaos Solitons Fract. 144, 110559 (2021)

    Article  Google Scholar 

  50. L.Q. Li, Y.T. Gao, X. Yu, T.T. Jia, L. Hu, C.Y. Zhang, Chin. J. Phys. (2022) in press, https://doi.org/10.1016/j.cjph.2021.09.004

  51. H.H. Chen, Y.C. Lee, C.S. Liu, Phys. Scr. 20, 490 (1979)

    Article  ADS  Google Scholar 

  52. A. Hussain, A. Jhangeer, S. Tahir, Y.M. Chu, I. Khan, K.S. Nisar, Results Phys. 18, 103208 (2020)

    Article  Google Scholar 

  53. V.S. Gerdjikov, M.I. Ivanov, Bulg. J. Phys. 10, 130 (1983)

    Google Scholar 

  54. C.C. Ding, Y.T. Gao, L.Q. Li, Chaos Soliton Fract. 120, 259 (2019)

    Article  ADS  Google Scholar 

  55. A. Kundu, J. Math. Phys. 25, 3433 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  56. T. Xu, Y. Chen, Nonlinear Dyn. 92, 2133 (2018)

    Article  Google Scholar 

  57. H.C. Morris, R.K. Dodd, Phys. Scr. 20, 505 (1979)

    Article  ADS  Google Scholar 

  58. L.M. Ling, Q.P. Liu, J. Phys. A 43, 434023 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  59. L.J. Guo, L.H. Wang, Y. Cheng, J.S. He, Commun. Nonlinear Sci. Numer. Simul. 79, 104915 (2019)

    Article  MathSciNet  Google Scholar 

  60. T. Xu, G.L. He, Nonlinear Dyn. 100, 2823 (2020)

    Article  Google Scholar 

  61. K. Mio, T. Ogino, K. Minami, S. Taketa, J. Phys. Soc. Jpn. 41, 265 (1976)

    Article  ADS  Google Scholar 

  62. E. Mjølhus, J. Plasma Phys. 16, 321 (1976)

    Article  ADS  Google Scholar 

  63. E. Mjølhus, J. Plasma Phys. 19, 437 (1978)

    Article  ADS  Google Scholar 

  64. M.S. Ruderman, J. Plasma Phys. 67, 271 (2002)

    Article  ADS  Google Scholar 

  65. V. Fedun, M.S. Ruderman, R. Erdelyi, Phys. Lett. A 372, 6107 (2008)

    Article  ADS  Google Scholar 

  66. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge Univ. Press, Cambridge, 2004)

    MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Appendix

Appendix

We will study the MI for Eq. (3) via the linear stability analysis. Setting the plane wave solution \(v[0]={\hat{\kappa }}e^{i\left[ {\hat{\omega }} \xi +\frac{1}{3}{\hat{\omega }}(2{{\hat{\kappa }}}^2\epsilon -3{\hat{\omega }})\varsigma \right] }\), we consider the solutions to be the following form:

$$\begin{aligned} v=({\hat{\kappa }}+{\hat{\varrho }} {\hat{u}})e^{i\left[ {\hat{\omega }} \xi +\frac{1}{3}{\hat{\omega }}(2{{\hat{\kappa }}}^2\epsilon -3{\hat{\omega }})\varsigma \right] }, \end{aligned}$$
(26)

where \({\hat{\varrho }}\) is a small parameter, \({\hat{u}}\) is a function with respect to \(\xi \) and \(\varsigma \), \({\hat{\omega }}\ne 0\) and \({\hat{\kappa }}\) are real constants. Taking Expression (26) into Eq. (3) can produce the linear system of \({\hat{u}}\) at \(O({\hat{\varrho }})\) as

$$\begin{aligned} iv_\varsigma +\frac{2}{3}[{\hat{\kappa }}^2\epsilon {\hat{\omega }}(v+v^*)-i(2{\hat{\kappa }}^2\epsilon -3{\hat{\omega }})v_\xi -i{\hat{\kappa }}^2\epsilon v_\xi ^*]+v_{\xi \xi }=0. \end{aligned}$$
(27)

Then, we set that

$$\begin{aligned} {\hat{u}}={\hat{\sigma }}_{11}(\varsigma )e^{i({\hat{\Lambda }} \xi +{\hat{\Omega }}\varsigma )}+{\hat{\sigma }}_{12}^*(\varsigma )e^{-i({\hat{\Lambda }} \xi +{\hat{\Omega }}\varsigma )}, \end{aligned}$$
(28)

where \({\hat{\sigma }}_{11}(\varsigma )\) and \({\hat{\sigma }}_{12}(\varsigma )\) are the functions of \(\varsigma \), \({\hat{\Lambda }}\) is the wave number and \({\hat{\Omega }}\) is the frequency of perturbation. Taking Solution (28) into Eq. (27), we acquire that

$$\begin{aligned} {\hat{\Upsilon }}_\varsigma =i{\hat{D}}{\hat{\Upsilon }}, \end{aligned}$$
(29)

where \({\hat{\Upsilon }}=({\hat{\sigma }}_{11}(\varsigma ),~{\hat{\sigma }}_{12}(\varsigma ))^T\). The matrix \({\hat{D}}\) can be acquired as

$$\begin{aligned} {\hat{D}}=&\begin{pmatrix} \frac{1}{3}[2{\hat{\kappa }}^2\epsilon ({\hat{\omega }}+2{\hat{\Lambda }})-3(2{\hat{\omega }}{\hat{\Lambda }}+{\hat{\Lambda }}^2+{\hat{\Omega }})]&{} \frac{2}{3}{\hat{\kappa }}^2\epsilon ({\hat{\omega }}+{\hat{\Lambda }})] \\ -\frac{2}{3}{\hat{\kappa }}^2\epsilon ({\hat{\omega }}-{\hat{\Lambda }})] &{}-\frac{1}{3}[2{\hat{\kappa }}^2\epsilon ({\hat{\omega }}-2{\hat{\Lambda }})+3(2{\hat{\omega }}{\hat{\Lambda }}-{\hat{\Lambda }}^2+{\hat{\Omega }})] \\ \end{pmatrix}. \end{aligned}$$
(30)

It is easy to see that we get two roots via solving the characteristic equation of the matrix \({\hat{D}}\) as

$$\begin{aligned}&{\hat{\Delta }}_1=\frac{4{\hat{\kappa }}^2{\hat{\Lambda }}\epsilon }{3}-2{\hat{\omega }}{\hat{\Lambda }}-\frac{1}{3}\sqrt{{\hat{\Lambda }}^2(4{\hat{\kappa }}^4-12{\hat{\kappa }}^2{\hat{\omega }}\epsilon +9{\hat{\Lambda }})}-{\hat{\Omega }},\\&{\hat{\Delta }}_2=\frac{4{\hat{\kappa }}^2{\hat{\Lambda }}\epsilon }{3}-2{\hat{\omega }}{\hat{\Lambda }}+\frac{1}{3}\sqrt{{\hat{\Lambda }}^2(4{\hat{\kappa }}^4-12{\hat{\kappa }}^2{\hat{\omega }}\epsilon +9{\hat{\Lambda }})}-{\hat{\Omega }}. \end{aligned}$$

If the characteristic equation of \({\hat{D}}\) has two real roots, thence the solutions are modulationally stable; if the characteristic equation of \({\hat{D}}\) has one pair of the complex conjugate roots. One of this pair of the conjugate complex roots has a negative imaginary part, and accordingly System (1) exhibits the baseband MI. Growth rates of the instability for Eq. (3) and System (1) are different.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DY., Tian, B., Qu, QX. et al. Lax pair, solitons, breathers and modulation instability of a three-component coupled derivative nonlinear Schrödinger system for a plasma. Eur. Phys. J. Plus 137, 189 (2022). https://doi.org/10.1140/epjp/s13360-021-02287-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02287-x

Navigation