Skip to main content
Log in

Finite volume method for simulation of flowing fluid via OpenFOAM

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article explains the non-Newtonian fluid simulations via OpenFOAM. The non-NewtonianIcoFoam solver is used for the simulation of the non-Newtonian fluid flow. High-resolution mesh is used for the simulation of flow around the cylinder. The article focuses on the implementation and functionality of the code of the non-Newtonian power law equations. Some basic information about OpenFOAM is also presented in the manuscript. The method used in the analysis for the simulation of the problem in the article is finite volume method (FVM). The simulations of the problem are demonstrated via graphs and animated videos. The flow analysis made by OpenFOAM states the behavior of velocity field when the fluid hits the obstacle. The animated videos further include the behavior of velocity in the leaving zone of cylinder obstacle. The clear view of fluid flow can be seen far from the cylindrical object.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. H. Jasak, Z. Tukovic, Dynamic mesh handling in OpenFOAM applied to fluid–structure interaction simulations. In Proceedings of the V European Conference on Computational Fluid Dynamics ECCOMAS CFD (2010)

  2. M. Kamran, M.A. Rehman, Enhanced transport properties in Ce doped cobalt ferrites nanoparticles for resistive RAM applications. J. Alloys Compd. 822, 153583 (2020)

    Article  Google Scholar 

  3. A. Laitinen, K. Saari, K. Kukko, P. Peltonen, E. Laurila, J. Partanen, V. Vuorinen, A computational fluid dynamics study by conjugate heat transfer in OpenFOAM: a liquid cooling concept for high power electronics. Int. J. Heat Fluid Flow 85, 108654 (2020)

    Article  Google Scholar 

  4. M. Rauter, L. Hoßße, R.P. Mulligan, W.A. Take, F. Løvholt, Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM. Coast. Eng. 1, 103815 (2020)

    Google Scholar 

  5. W. Fan, H. Anglart, varRhoTurbVOF 2: modified OpenFOAM volume of fluid solvers with advanced turbulence modeling capability. Comput. Phys. Commun. 256, 107467 (2020)

    Article  MathSciNet  Google Scholar 

  6. P. Peltonen, P. Kanninen, E. Laurila, V. Vuorinen, The ghost fluid method for OpenFOAM: a comparative study in marine context. Ocean Eng. 216, 108007 (2020)

    Article  Google Scholar 

  7. E. Fadiga, N. Casari, A. Suman, M. Pinelli, CoolFOAM: the CoolProp wrapper for OpenFOAM. Comput. Phys. Commun. 250, 107047 (2020)

    Article  Google Scholar 

  8. S. Westermaier, W. Kowalczyk, Implementation of non-Newtonian fluid properties for compressible multiphase flows in OpenFOAM. Open J. Fluid Dyn. 10(02), 135 (2020)

    Article  ADS  Google Scholar 

  9. R. Keser, A. Ceschin, M. Battistoni, H.G. Im, H. Jasak, Development of a Eulerian multi-fluid solver for dense spray applications in OpenFOAM. Energies 13(18), 4740 (2020)

    Article  Google Scholar 

  10. V.B. Nguyen, Q.V. Do, V.S. Pham, An OpenFOAM solver for multiphase and turbulent flow. Phys. Fluids 32(4), 043303 (2020)

    Article  ADS  Google Scholar 

  11. C.T. Jacobs, Modelling a moving propeller system in a stratified fluid using OpenFOAM. Fluids 5(4), 217 (2020)

    Article  Google Scholar 

  12. E. Higgins, J. Pitt, E. Paterson, Multi-scale localized perturbation method in OpenFOAM. Fluids 5(4), 250 (2020)

    Article  Google Scholar 

  13. Z. Huang, M. Zhao, Y. Xu, G. Li, H. Zhang, Eulerian–Lagrangian modelling of detonative combustion in two-phase gas-droplet mixtures with OpenFOAM: Validations and verifications. Fuel 286, 119402 (2020)

    Article  Google Scholar 

  14. J.P. Rojas, G.V. Ochoa, J.D. Forero, CFD analysis of swirl effect in a diesel engine using OpenFOAM. Int. Rev. Model. Simul. 13(1), 8–15 (2020)

    Google Scholar 

  15. J.C. Wang, D. Kotlyar, High-resolution thermal analysis of nuclear thermal propulsion fuel element using OpenFOAM. Nucl. Eng. Des. 372, 110957 (2020)

    Article  Google Scholar 

  16. G. Chen, Q. Xiong, P.J. Morris, E.G. Paterson, A. Sergeev, Y. Wang, OpenFOAM for computational fluid dynamics. Not. AMS 61(4), 354–363 (2014)

    MathSciNet  MATH  Google Scholar 

  17. J. Ren, S.J. Cao, Development of self-adaptive low-dimension ventilation models using OpenFOAM: towards the application of AI based on CFD data. Build. Environ. 171, 106671 (2020)

    Article  Google Scholar 

  18. L.M. Vieira, M. Giacomini, R. Sevilla, A. Huerta, A second-order face-centred finite volume method for elliptic problems. Comput. Methods Appl. Mech. Eng. 358, 112655 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics The Finite Volume Method, 2nd edn. (Pearson Prentice Hall, Harlow, 2007)

    Google Scholar 

  20. T.R. Mahapatra, S.K. Nandy, A.S. Gupta, Analytical solution of magnetohydrodynamic stagnation-point flow of a power-law fluid towards a stretching surface. Appl. Math. Comput. 215(5), 1696–1710 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Z. Chen, C. Shu, Simplified lattice Boltzmann method for non-Newtonian power-law fluid flows. Int. J. Numer. Methods Fluids 92(1), 38–54 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.W.S. Khan, N. Ali, Thermal entry flow of power-law fluid through ducts with homogeneous slippery wall (s) in the presence of viscous dissipation. Int. Commun. Heat Mass Transf. 120, 105041 (2021)

    Article  Google Scholar 

  23. M.J. Sarafan, R. Alizadeh, A. Fattahi, M.V. Ardalan, N. Karimi, Heat and mass transfer and thermodynamic analysis of power-law fluid flow in a porous microchannel. J. Therm. Anal. Calorim. 141(5), 2145–2164 (2020)

    Article  Google Scholar 

  24. S. Patankar, Numerical Heat Transfer and Fluid Flow (Taylor & Francis, London, 1980)

    MATH  Google Scholar 

  25. R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting. J. Comput. Phys. 62, 40–65 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  26. A.K. Saha, Unsteady flow past a finite square cylinder mounted on a wall at low Reynolds number. Comput. Fluids 88, 599–615 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Muhammad.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 35002 KB)

Supplementary material 2 (avi 38692 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, N. Finite volume method for simulation of flowing fluid via OpenFOAM. Eur. Phys. J. Plus 136, 1010 (2021). https://doi.org/10.1140/epjp/s13360-021-01983-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01983-y

Navigation