Skip to main content
Log in

E-tirucalli latex mediated green biogenic synthesized Dy3+ doped and Bi3+ co-doped nano perovskite lanthanum aluminum oxide: structure, morphology, luminescence and dielectric studies

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Perovskite structured LaAlO3, LaAlO3:Dy3+ and LaAlO3:Dy3+:Bi3+ (One mol%) nano materials were prepared by green biogenic method using of Euphorbia-tirucalli plant latex as a fuel. Rhombohedral structure with space group R 3 m having crystallite size of 18–28 nm was attained using X-ray diffraction spectra. The absorption peaks at 426 cm−1, 677 cm−1 and 825 cm−1 for the spectral range between 840 cm−1 to 400 cm−1 would be endorsed to the characteristic metal oxide (M = La and/or Al) bonding. Irregular, flakes type surface and its constituents shown by scanning electron microscopy attached with energy dispersive spectra. Band gap energy by reflectance spectra shows 2.77–3.10 eV. Luminescence property exhibits the maximum wavebands at 450–490 nm, 540–580 nm and 650–675 nm resembles to the electron transition from 4F9/2 → 6H15/2, 4F9/2 → 6H13/2 and 4F9/2 → 6H11/2 levels, respectively, monitored at 265 nm. Also, spectra show the enhanced emission intensity when Bi3+ ion is co-doped. Color chromaticity and correlated color temperature of 7705 K confirm the practical usage as one of the component in cool white light emitting diodes. High dielectric for LaAlO3 and conductivity contribution measured by Cole–Cole plot indicate that the appearance of semicircle at higher frequency zone signifies the grain contribution. Also, the resistance is increased for Dy3+ doped and Bi3+co-doped samples for the frequency range from 100 Hz to 8 MHz at room temperature. Hence, these materials are used in electronic storage, high frequency meter application and CMOS devices.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data required to reproduce these findings are available from the corresponding authors upon reasonable request.

References

  1. R. Venkatesh, S. Pratibha, N. Dhananjaya, S.R. Manohara, G. Nagaraju, Mat. Res. Exp. 6, 095008 (2019)

    Article  Google Scholar 

  2. S. Vijay-Singh, Watanabe, T.K. Gundu Rao, J.F.D. Chubaci, Ho-Young Kwak, Sol. State Sci. 13, 66 (2011).

  3. E. Amanda, E. Henkes, Raymond, Schaak, J. Sol. Stat. Chem. 181, 3264 (2008)

  4. P. Sehrawat, A. Khatkar, P. Boora, M. Kumar, R.K. Malik, S.P. Khatkar, V.B. Taxak, Ceramic. Int. 46(10), 16274–16284 (2020)

    Article  Google Scholar 

  5. Y. Zhou, J. Chen, O.M. Bakr, H.-T. Sun, Chem. Mater. 30, 6589–6613 (2018)

    Article  Google Scholar 

  6. P. Sehrawat, R.K. Malik, N. Kumari, M. Punia, S.P. Khatkar, V.B. Taxak, Chem. Phy. Lett. 770, 138438 (2021)

    Article  Google Scholar 

  7. V.P. Zhereb, V.M. Skorikov, Inorg. Mat. 39, S121 (2003)

    Article  Google Scholar 

  8. A. Hershaft, J.D. Corbett, Inorg. Chem. 2, 979–985 (1963)

    Article  Google Scholar 

  9. H.T. Sun, J. Zhou, J. Qiu, Prog. Mater. Sci. 64, 1–72 (2014)

    Article  Google Scholar 

  10. S. Hemasundara Raju, K. Thyagarajan, B. Sudhakar Reddy, C. Nageswara Raju, Mat. Today. 2, 4463 (2015)

    Google Scholar 

  11. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, H.J. Zhang, Y.C. Han, Chem. Mater. 14, 2224 (2002)

    Article  Google Scholar 

  12. J.J. Kingsley, K.C. Patil, Mat. Lett. 6, 427 (1988)

    Article  Google Scholar 

  13. A. Wal, P. Wal, N. Gupta, G. Vishnoi, G. Srivastava, Int. J. Pharm. & Bio. Arch. 4, 31 (2013)

    Google Scholar 

  14. J. Chandradass, K.H. Kim, Adv. Powd. Tech. 21, 100 (2010)

    Article  Google Scholar 

  15. R. Guo, D. Guo, Y. Chen, Z. Yang, Q. Yuan, Ceram. Int. 28, 699 (2002)

    Article  Google Scholar 

  16. J. Zylberberg, Z.-G. Yea, J. Appl. Phy. 100, 086102 (2006)

    Article  ADS  Google Scholar 

  17. S.T. Aruna, N.S. Kini, K.S. Rajam, Mat. Res. Bull. 44, 728 (2009)

    Article  Google Scholar 

  18. A. Wal, P. Wal, N. Gupta, G. Vishnoi, S. Int, J. Pharm. & Bio. Arch. 4, 31 (2013)

    Google Scholar 

  19. J. Chandradass, K.H. Kim, J. Alloys and Comp. 481, 131 (2009)

    Article  Google Scholar 

  20. R. Venkatesh, N. Dhananjaya, C. Shivakumara, H. Nagabhushana, Int. J. Nanotech. 14, 793 (2017)

    Article  Google Scholar 

  21. K. Reimann, R. Würschum, J. Appl. Phy. 81, 7186 (1997)

    Article  ADS  Google Scholar 

  22. A. Barabauskas, D. Jasaitis, A. Kareiva, Vib. Spec. 28, 263 (2002)

    Article  Google Scholar 

  23. G. Socrates, Infrared and Raman Characteristic Group Frequencies Tables and Charts, 3rd edn. (Wiley, Chichester, 2001)

    Google Scholar 

  24. B. Schrader (ed.), Infrared Raman Spectroscopy: Methods and Applications (VCH, Weinheim, 1995)

    Google Scholar 

  25. J.B. Prasanna-Kumar, G. Ramgopal, Y.S. Vidya, K.S. Anantharaju, B. Daruka-Prasad, S.C. Sharma, S.C. Prashantha, H.P. Nagaswarupa, D. Kavyashree, H. Nagabhushana, Cry. Grow. Des. 14, 4068 (2014)

    Article  Google Scholar 

  26. T. Manohar, S.C. Prashantha, H. Nagabhushana, K. Channakeshavalu, H.P. Nagaswarupa, Mat. Today. 4, 11848 (2017)

    Google Scholar 

  27. P.B. Devaraja, D.N. Avadhani, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, B.D. Prasad, Mat. Char. 97, 27 (2014)

    Article  Google Scholar 

  28. C. Boronat, T. Rivera, J. Garcia-Guinea, V. Correcher, Rad. Phys. and Chem. 30, 236 (2017)

    Article  ADS  Google Scholar 

  29. W.Y. Shen, M.L. Pang, J. Lin, J. Fang, J. Elect. chem. Soc. 152, H25 (2005)

    Article  Google Scholar 

  30. M.L. Pang, W.Y. Shen, J. Lin, J. Appl. Phys. 97, 033511 (2005)

    Article  ADS  Google Scholar 

  31. Z. Xu, Y. Li, Z. Liu, D. Wang, J. Alloy. Comp. 391, 202 (2005)

    Article  Google Scholar 

  32. N. Salah, P.D. Sahare, S.P. Lochab, P. Kumar, Rad. Meas. 41, 40 (2006)

    Article  Google Scholar 

  33. R.B. Basavaraj, H. Nagabhushana, B.D. Prasad, S.C. Sharma, S.C. Prashantha, B.M. Nagabhushana, Optik 126, 1745 (2015)

    Article  ADS  Google Scholar 

  34. C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, J. Alloy. Comp. 623, 248 (2015)

    Article  Google Scholar 

  35. T. Manohar, R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, C. Pratapkumar, H.B. Premkumar, Dyes and Pigm. 122, 22 (2015)

    Article  Google Scholar 

  36. S. Chemingui, M. Ferhi, K. Horchani-Naifer, M. Ferid, J. Lumin. 166, 82 (2015)

    Article  Google Scholar 

  37. K. Krishna, J. Mini, Elect. chem. Soc. 154, J310 (2007)

    Article  Google Scholar 

  38. Q. Wan, YuPing He, N. Dai, BingSuo Zou, Sci. China Ser. B - Chem. 52, 1104 (2009)

    Article  ADS  Google Scholar 

  39. D. Singh, J. Kaur, N.S. Suryanarayana, R. Shrivastava, V. Dubey, J. Mat. Sci: Mat. Elect. 28, 2462 (2017)

    Google Scholar 

  40. D.T. Vijay-Singh, R.P.S. Naidu, Y.C. Chakradhar, Ratnakaram, Jun-Jie Zhu, Manish Soni. Phys. B 403, 3781 (2008)

    ADS  Google Scholar 

  41. J. Kaur, D. Chandrakar, V. Dubey, R. Shrivastava, Y. Parganiha, N.S. Suryanarayana, J. Disp. Tech. 10(1109), 2503330 (2015)

    Google Scholar 

  42. D. Li, C. Liu, L. Jiang, Opt. Mater. 48, 18 (2015)

    Article  ADS  Google Scholar 

  43. S. Abbas, A. Munir, F. Zahra, M.A. Rehman, Mat. Sci. Eng. 146, 012027 (2016)

    Google Scholar 

  44. E.A. Nenasheva, A.D. Kanareykin, N.F. Kartenko, A.I. Dedyk, S.F. Karmanenko, J. Elect. ceram. 13, 235 (2004)

    Google Scholar 

  45. F. Stern, C. Weaver, J. Phys. C Solid State Phys. 3, 1736 (2004)

    Article  ADS  Google Scholar 

  46. A.M. Abdeen, O.M. Hemeda, E.E. Assem, M.M. El-Sehly, J. Magn. Magn. Mater. 238, 75 (2002)

    Article  ADS  Google Scholar 

  47. N.H. Vasoya, V.K. Lakhani, P.U. Sharma, K.B. Modi, R. Kumar, H.H. Joshi, J. Phys.: Cond. Matt. 18, 8063 (2006)

    ADS  Google Scholar 

  48. S. Xavier, S. Thankachan, B.P. Jacob, E.M. Mohammed, Int. Conference on Materials Science and Technology (ICMST 2012), Mat. Sci. and Engg. 73, 012093 (2015).

  49. J.T. Irvine, D.C. Sinclair, A.R. West, Adv. Mat. 2, 132 (1990)

    Article  Google Scholar 

  50. N. J. Shivaramu, B. N. Lakshminarasappa, K. R. Nagabhushana, E. Coetsee, H. C.Swart, AIP Conference Proceedings, Volume 1942, Issue 1, (2018).

  51. T. Rivera-Montalvo, A. Morales-Hernandez, A.A. Barrera-Angeles, R. Alvarez-Romero, C. Falcony, Zarate-Medina. J. Phy. Chemi. 140, 68–73 (2017)

    Google Scholar 

  52. Q. De Clercq, Olivier, Korthout, Katleen. Materials (Basel). 10(12), 1422 (2017)

    ADS  Google Scholar 

  53. M. Suzuki, Materials 5, 443–477 (2012)

    Article  ADS  Google Scholar 

  54. A.K. Adak, P. Pramanik, Mat. Lett. 30(4), 269–273 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Venkatesh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, R., Manohara, S.R., Nagaraju, G. et al. E-tirucalli latex mediated green biogenic synthesized Dy3+ doped and Bi3+ co-doped nano perovskite lanthanum aluminum oxide: structure, morphology, luminescence and dielectric studies. Eur. Phys. J. Plus 136, 948 (2021). https://doi.org/10.1140/epjp/s13360-021-01888-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01888-w

Navigation