Skip to main content
Log in

Electromagnetic curves and rotation of the polarization plane through alternative moving frame

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study investigates the behavior of a linearly polarized light wave in optical fiber and the rotation of the polarization plane through an alternative moving frame \(\{{\mathbf {n}},{\mathbf {c}},{\mathbf {w}}\}\) in 3D Riemannian space. It is known that the geometric evolution of a polarized light wave is associated with the Berry phase (geometric phase). Thus, a new kind of geometric phase model has been generated in 3D Riemannian space. Moreover, the rotation of the polarization plane has been described using the Fermi–Walker parallel transportation law. Then, this was reviewed with the Rytov parallel transportation along with the direction of the state of the polarization plane in an optical fiber by means of the \(\{n, c, w\}\) frame. Furthermore, the electromagnetic trajectories (\({\mathbf {E}}\)M-trajectories) obtained by the electric field \({\mathbf {E}}\) along the polarization plane of a light wave traveling in an optical fiber were characterized. Finally, various examples to support the theoretical background were visualized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Y.A. Kravtsov, Y.I. Orlov, Geometrical Optics of Inhomogeneous Medium (Nauka, Moscow, 1980 (Springer-Verlag, Berlin, 1990)

    Google Scholar 

  2. S.M. Rytov, Dokl. Akad. Nauk. SSSR 18, 263 (1938), reprinted, in Topological Phases in Quantum Theory, ed. by B. Markovski, S.I. Vinitsky (World Scientific, Singapore, 1989)

  3. V.V. Vladimirski, Dokl. Akad. Nauk. SSSR 31, 222 (1941); reprinted, in Topological Phases in Quantum Theory, ed. by B. Markovski, S.I. Vinitsky (World Scientific, Singapore, 1989)

  4. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Kugler, S. Shtrikman, Berry’s phase, locally inertial frames, and classical analogues. Phys. Rev. D 37(4), 934 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  6. J.N. Ross, The rotation of the polarization in low briefrigence monomode optical fibres due to geometric effects. Opt. Quantum Electron. 16(5), 455 (1984)

    Article  ADS  Google Scholar 

  7. R. Dandoloff, W.J. Zakrzewski, Parallel transport along a space curve and related phases. J. Phys. A Math. Gen. 22(11), L461 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  8. R. Dandoloff, Berry’s phase and Fermi–Walker parallel transport. Phys. Lett. A 139(12), 19 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. I.I. Satija, R. Balakrishnan, Geometric phases in twisted strips. Phys. Lett. A 373(39), 3582 (2009)

    Article  ADS  Google Scholar 

  10. O. Yamashita, Effect of the geometrical phase shift on the spin and orbital angular momenta of light traveling in a coiled optical fiber with optical activity. Opt. Commun. 285, 3740 (2012)

    Article  ADS  Google Scholar 

  11. O. Yamashita, Geometrical phase shift of the extrinsic orbital angular momentum d ensity of light propagating in a helically wound optical fiber. Opt. Commun. 285, 3061 (2012)

    Article  ADS  Google Scholar 

  12. E.M. Frins, W. Dultz, Rotation of the polarization plane in optical fibers. J. Lightwave Technol. 15(1), 144 (1997)

    Article  ADS  Google Scholar 

  13. T. Körpinar, R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D semi- Riemannian manifold. J. Mod. Opt. (2019) https://doi.org/10.1080/09500340.2019.1579930

  14. T. Körpinar, R.C. Demirkol, Electromagnetic curves of the linearly polarized light wave along an optical fiber in a 3D Riemannian manifold with Bishop equations. Optik Int. J. Light Electr. Opt. 200, 163334 (2020)

    Article  Google Scholar 

  15. Z. Özdemir, A new calculus for the treatment of Rytov’s law in the optical fiber. Optik Int. J. Light Electr. Opt. 216, 164892 (2020)

    Article  Google Scholar 

  16. A. Comtet, On the Landau Hall levels on the hyperbolic plane. Ann. Phys. 173, 185 (1987)

    Article  ADS  Google Scholar 

  17. T. Adachi, Kahler magnetic flow for a manifold of constant holomorphic sectional curvature. Tokyo J. Math. 18, 473 (1995)

    Article  MathSciNet  Google Scholar 

  18. T. Adachi, Kahler magnetic on a complex projective space. Proc. Jpn. Acad. Ser. A Math. Sci. 70, 12 (1994)

    Article  Google Scholar 

  19. J.L. Cabrerizo, M. Fernandez, J.S. Gomez, The contact magnetic flow in 3D Sasakian manifolds. J. Phys. A Math. Theor. 42, 195201 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. M. Barros, J.L. Cabrerizo, M. Fernández, A. Romero, Magnetic vortex flament flows. J. Math. Phys. 48, 1–27 (2007)

    Article  Google Scholar 

  21. M. Barros, A. Romero, J.L. Cabrerizo, M. Fernández, The Gauss-Landau-Hall problem on Riemanniansurfaces. J. Math. Phys. 46, 112905 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Barros, Magnetic helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503–1509 (1997)

    Article  Google Scholar 

  23. T. Sunada, (1993) Magnetic flows on a Riemann surface. In Proceedings of the KAIST Mathematics Workshop:Analysis and Geometry, Taejeon, Korea, 3–6 August 1993; KAIST: Daejeon, Korea

  24. Z. Bozkurt, İ. Gök, Y. Yaylı, F.N. Ekmekci, A new approach for magnetic curves in 3D Riemannian manifolds. J. Math. Phys. 55, 053501 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.L. Cabrerizo, Magnetic fields in 2D and 3D sphere. J. Nonlinear Math. Phys. 20, 440–450 (2013)

    Article  MathSciNet  Google Scholar 

  26. S.L. Druta-Romaniuc, M.I. Munteanu, Magnetic curves corresponding to killing magnetic fields in E3. J. Math. Phys. 52, 113506 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. S.L. Druta-Romaniuc, M.I. Munteanu, Killing magnetic curves in a Minkowski 3-space. Nonlinear Anal. Real World Appl. 14, 383–396 (2013)

    Article  MathSciNet  Google Scholar 

  28. Z. Özdemir, İ. Gök, Y. Yaylı, F.N. Ekmekci, Notes on magnetic curves in 3D semi-Riemannian manifolds. Turk. J. Math. 39, 412–426 (2015)

    Article  MathSciNet  Google Scholar 

  29. B. Uzunoğlu, İ. Gök, Y. Yaylı, A new approach on curves of constant precession. Appl. Math. Comput. 275, 317–323 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hazal Ceyhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceyhan, H., Özdemir, Z., Gök, İ. et al. Electromagnetic curves and rotation of the polarization plane through alternative moving frame. Eur. Phys. J. Plus 135, 867 (2020). https://doi.org/10.1140/epjp/s13360-020-00881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00881-z

Navigation