Skip to main content
Log in

Theoretical studies on electronic properties of a new carbon allotrope with paring of pentagonal and heptagonal rings

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In recent years, modeling and simulation techniques have been pioneered in the field of prediction existence or ability to synthesize new structures and to study physical and chemical properties. One of these methods is first-principles computations, which are based on the Kohn–Sham density functional theory (DFT). In this work, we predict a new kind of two-dimensional (2D) carbon allotrope by a tiny size building block with interesting properties. A systematic study of the structural and electronic properties on a non-hexagonal flat carbon allotrope has been performed in two different phases that consist of pentagonal (P\(\equiv \{C_5\}\)) and heptagonal (H\(\equiv \{C_7\}\)) rings, as well as a carbon nanotube (CNT), by using the DFT computational method. Hence, we obtain optimized lattice structures, bond lengths, density of states (DOS), band structure, the isosurface, and the difference charge density for these both novel two-dimension (2D) materials. The results show that regardless of the type of structure, the nanostructures are electrically metallic. It is anticipated that the results of the present work can be useful in the experimental synthesis of these materials and their potential applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are contacting with the corresponding author].

References

  1. R. Saito, G. Dresselhaus, M.S. Dresselhaus et al., Physical Properties of Carbon Nanotubes, vol. 35 (World Scientific, Singapore, 1998)

    MATH  Google Scholar 

  2. H.W. Kroto, J.R. Heath, S.C. ÓBrien, R.F. Curl, R.E. Smalley, Nature 318(6042), 162–163 (1985)

    ADS  Google Scholar 

  3. S. Iijima et al., Nature 354(6348), 56–58 (1991)

    ADS  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A. Firsov, Science 306(5696), 666–669 (2004)

    ADS  Google Scholar 

  5. S. Ghosh, I. Calizo, D. Teweldebrhan, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92(15), 151911 (2008)

    ADS  Google Scholar 

  6. K.M. Shahil, A.A. Balandin, Solid State Commun. 152(15), 1331–1340 (2012)

    ADS  Google Scholar 

  7. W. Hua-Qiang, L. Chang-Yang, L. Hong-Ming, Q. He, Chin. Phys. B 22(9), 098106 (2013)

    ADS  Google Scholar 

  8. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Small 7(14), 1876–1902 (2011)

    Google Scholar 

  9. A. Vahedi, M. Sadr Lahidjani, Eur. Phys. J. Plus 132(10), 420 (2017)

    Google Scholar 

  10. W. Chen, F. Li, P.C. Ooi, Y. Ye, T.W. Kim, T. Guo, Sens. Actuators B Chem. 222, 763–768 (2016)

    Google Scholar 

  11. G. Jiang, M. Goledzinowski, F. J. Comeau, H. Zarrin, G. Lui, J. Lenos, A. Veileux, G. Liu, J. Zhang, S. Hemmati et al. Adv. Funct. Mater. (2016)

  12. S. Guo, S. Dong, Chem. Soc. Rev. 40(5), 2644–2672 (2011)

    Google Scholar 

  13. L. Lancellotti, T. Polichetti, F. Ricciardella, O. Tari, S. Gnanapragasam, S. Daliento, G. Di Francia, Thin Solid Films 522, 390–394 (2012)

    ADS  Google Scholar 

  14. R.H. Baughman, A.A. Zakhidov, W. de Heer, Science 297(5582), 787–792 (2002)

    ADS  Google Scholar 

  15. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat. Mater. 5(12), 987–994 (2006)

    ADS  Google Scholar 

  16. M.F. De Volder, S.H. Tawfick, R.H. Baughman, A. Hart, J. Sci. 339(6119), 535–539 (2013)

    ADS  Google Scholar 

  17. Y. Saito, S. Uemura, Carbon 38(2), 169–182 (2000)

    Google Scholar 

  18. V.N. Popov, Mater. Sci. Eng. R Rep. 43(3), 61–102 (2004)

    Google Scholar 

  19. J.J. Gooding, Electrochim. Acta 50(15), 3049–3060 (2005)

    Google Scholar 

  20. Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, W. Tang, Phys. B Condens. Matter 406(11), 2254–2260 (2011)

    ADS  Google Scholar 

  21. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Letters 9(5), 1752–1758 (2009)

    ADS  Google Scholar 

  22. M.T. Lusk, L.D. Carr, Phys. Rev. Lett. 100(17), 175503 (2008)

    ADS  Google Scholar 

  23. E. Beheshti, A. Nojeh, P. Servati, Carbon 49(5), 1561–1567 (2011)

    Google Scholar 

  24. A. Shokri, E.K. Safari, Indian J. Phys. 89(1), 23–29 (2015)

    ADS  Google Scholar 

  25. Fan, L.J. Xinyu, G. Chen, RSC Adv. 7(1), 17417 (2017)

    Google Scholar 

  26. A. Balaban, C.C. Rentia, E. Ciupitu, Revue Romaine De Chimie 13(2), 231 (1968)

    Google Scholar 

  27. A.N. Enyashin, A.L. Ivanovskii, Phys. Status solidi (b) 248(8), 1879–1883 (2011)

    ADS  Google Scholar 

  28. A. Enyashin, A. Ivanovskii, Chem. Phys. Lett. 509(4), 143–147 (2011)

    ADS  Google Scholar 

  29. E. Brayfindley, E. Irace, C. Castro, W. Karney, J. Org. Chem. 80(8), 3825–3831 (2015)

    Google Scholar 

  30. A. Stone, D. Wales, Chem. Phys. Lett. 128(5), 501–503 (1986)

    ADS  Google Scholar 

  31. B. Eggen, M. Heggie, G. Jungnickel, C. Latham, R. Jones, Science 272, 87–90 (1996)

    ADS  Google Scholar 

  32. J. Ma, D. Alfè, A. Michaelides, E. Wang, Phys. Rev. B 80(3), 033407 (2009)

    ADS  Google Scholar 

  33. H. Bao, L. Wang, C. Li, J. Luo, ACS Appl. Mater. Interfaces 11(3), 2717–2729 (2019)

    Google Scholar 

  34. G. Brunetto, P. Autreto, L. Machado, B. Santos, R. dos Santos, D. Galvão, J. Phys. Chem. C 116(23), 12810–12813 (2012)

    Google Scholar 

  35. V. Gaikwad, ACS Omega 4(3), 5002–5011 (2019)

    Google Scholar 

  36. Z. Wang, Z. Kang, J. Phys. Chem. 100(45), 17725–17731 (1996)

    Google Scholar 

  37. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1), 15–50 (1996)

    Google Scholar 

  38. G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758 (1999)

    ADS  Google Scholar 

  39. G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B 50(18), 13181 (1994)

    ADS  Google Scholar 

  40. P.E. Blöchl, Phys. Rev. B 50(24), 17953 (1994)

    ADS  Google Scholar 

  41. J.P. Perdew, Y. Wang, Phys. Rev. B 46(20), 12947 (1992)

    ADS  Google Scholar 

  42. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80(15), 155453 (2009)

    ADS  Google Scholar 

  43. H. Monkhorst, J. Pack, Phys. Rev. B 13(12), 5188 (1976)

    ADS  MathSciNet  Google Scholar 

  44. C-X. Zhao, et al., Comput. Mater. Sci. 160(1), 115–119 (2019)

  45. X-Q. Wang, et al., Phys. Chem. Chem. Phys. 15(6), 2024–2030 (2013)

  46. X. Li, Q. Wang, J. P, J. Phys. Chem. Lett. 8(14), 3234–3241 (2017)

  47. H. Liu, C. Chan, Phys. Rev. B 66(11), 115416 (2002)

    ADS  Google Scholar 

  48. S. Guo, Y. Jiang, F. Wu, P. Yu, Liu, Y. Hand Li, L. Mao, ACS Appl. Mater. Interfaces 11(3), 2684–2691 (2019)

    Google Scholar 

  49. T. Lin, J. Wang, ACS Appl. Mater. Interfaces 11(3), 2638–2646 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliasghar Shokri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokri, A., Safari, E.K. Theoretical studies on electronic properties of a new carbon allotrope with paring of pentagonal and heptagonal rings. Eur. Phys. J. Plus 135, 771 (2020). https://doi.org/10.1140/epjp/s13360-020-00708-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00708-x

Navigation