Skip to main content

Advertisement

Log in

Reassessing dust’s role in forming the CMB

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The notion that dust might have formed the cosmic microwave background (CMB) has been strongly refuted on the strength of four decades of observation and analysis, in favour of recombination at a redshift \(z\sim 1080\). But tension with the data is growing in several other areas, including measurements of the Hubble constant H(z) and the BAO scale, which directly or indirectly impact the physics at the surface of last scattering (LSS). The \(R_\mathrm{h}=ct\) universe resolves at least some of this tension. We show in this paper that—if the BAO scale is in fact equal to the acoustic horizon—the redshift of the LSS in this cosmology is \(z_\mathrm{cmb} \sim 16\), placing it within the era of Pop III star formation, prior to the epoch of reionization at \(15\gtrsim z \gtrsim 6\). Quite remarkably, the measured values of \(z_\mathrm{cmb}\) and \(H_0\equiv H(0)\) in this model are sufficient to argue that the CMB temperature today ought to be \(\sim 3\) K, so \(H_0\) and the baryon-to-photon ratio are not independent free parameters. This scenario might have resulted from rethermalization of the CMB photons by dust, presumably supplied to the interstellar medium by the ejecta of Pop III stars. Dust rethermalization may therefore yet resurface as a relevant ingredient in the \(R_\mathrm{h}=ct\) universe. Upcoming high-sensitivity instruments should be able to readily distinguish between the recombination and dust scenarios by either (i) detecting recombination lines at \(z\sim 1080\) or (ii) establishing a robust frequency-dependent variation of the CMB power spectrum at the level of \(\sim \) 2–4% across the sampled frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In the context of \(R_\mathrm{h}=ct\), we know that radiation alone cannot sustain an equation of state \(p=-\rho /3\), so dark energy is a necessary ingredient.

  2. In this expression, we have adopted the Planck optimized value of the Hubble constant, \(H_0=67.6\pm 0.9\) km \(\hbox {s}^{-1} \hbox {Mpc}^{-1}\) [79]. To be fair, this is the value measured in the context of \(\Lambda \)CDM, and while a re-analysis of the Planck data in the context of \(R_\mathrm{h}=ct\) will produce a somewhat different result for \(H_0\), the differences are likely to be too small to affect the discussion in this paper.

References

  1. S. Alam et al., MNRAS (2016, submitted) arXiv:1607.03155

  2. E. Alipour, K. Sigurdson, C.M. Hirata, PRD 91, 083520 (2015)

    ADS  Google Scholar 

  3. E. Aubourg, S. Bailey, J.E. Bautista et al., Phys. Rev. D 92, 123516 (2015)

    ADS  Google Scholar 

  4. A. Benoit-Lévy, G. Chardin, A&A 537, A78 (2012)

    ADS  Google Scholar 

  5. C. Blake et al., MNRAS 418, 3 (2011)

    Google Scholar 

  6. V. Bromm, R.B. Larson, ARA&A 42, 79 (2004)

    ADS  Google Scholar 

  7. R.R. Caldwell, C. Hirata, M. Kamionkowski, ApJ 839, 91 (2017)

    ADS  Google Scholar 

  8. C.J. Copi, D. Huterer, D.J. Schwarz, G.D. Starkman, MNRAS 451, 2978 (2015)

    ADS  Google Scholar 

  9. L.L. Cowie, ApJ 225, 887 (1978)

    ADS  Google Scholar 

  10. M. Crocce, R. Scoccimarro, PRD 73, 063520 (2006)

    ADS  Google Scholar 

  11. R.H. Cyburt et al., JCAP 11, 12 (2008)

    ADS  Google Scholar 

  12. T. Delubac et al., A&A 574, A59 (2015)

    ADS  Google Scholar 

  13. A.Z. Dolginov, I.G. Mytrophanov, Ap. Space Sci. 43, 291 (1976)

    ADS  Google Scholar 

  14. C. Destri, H.J. de Vega, N.G. Sanchez, PRD 78, 023013 (2008)

    ADS  Google Scholar 

  15. M. Doran, M. Lilley, MNRAS 330, 965 (2002)

    ADS  Google Scholar 

  16. B. Draine, Physics of the Interstellar and Intergalactic Medium (Princeton University Press, Princeton, 2011)

    MATH  Google Scholar 

  17. B. Draine, A.A. Fraisse, ApJ 696, 1 (2009)

    ADS  Google Scholar 

  18. B.T. Draine, A. Li, ApJ 551, 807 (2001)

    ADS  Google Scholar 

  19. B.T. Draine, J.C. Weingartner, ApJ 470, 551 (1996)

    ADS  Google Scholar 

  20. B.T. Draine, J.C. Weingartner, ApJ 480, 633 (1997)

    ADS  Google Scholar 

  21. D.J. Eisenstein, H.-J. Seo, E. Sirko, D.N. Spergel, ApJ 664, 675 (2007)

    ADS  Google Scholar 

  22. D.J. Eisenstein, H.-J. Seo, M. White, ApJ 664, 660 (2007)

    ADS  Google Scholar 

  23. A. Font-Ribera et al., JCAP 5, 27 (2014)

    ADS  MathSciNet  Google Scholar 

  24. S.C.O. Glover, Space Sci. Rev. 117, 445 (2005)

    ADS  Google Scholar 

  25. D. Grasso, H.R. Rubinstein, Phys. Rep. 348, 163 (2001)

    ADS  Google Scholar 

  26. J.J. Halliwell, PLB 185, 341 (1987)

    Google Scholar 

  27. W.J. Handley, S.D. Brechet, A.N. Lasenby, M.P. Hobson, PRD 89, 063505 (2014)

    ADS  Google Scholar 

  28. I. Hawkins, E.L. Wright, ApJ 324, 46 (1988)

    ADS  Google Scholar 

  29. A. Heger, C.L. Fryer, S.E. Woosley, N. Langer, D.H. Hartmann, ApJ 591, 288 (2003)

    ADS  Google Scholar 

  30. A. Heger, S.E. Woosely, ApJ 567, 532 (2002)

    ADS  Google Scholar 

  31. G. Hinshaw, D.N. Spergel, L. Verde, R.S. Hill, S.S. Meyer, C. Barnes, C.L. Bennett, M. Halpern et al., ApJS 148, 135 (2003)

    ADS  Google Scholar 

  32. T. Hoang, A. Lazarian, Adv. Astron., 2012, Article ID 208159 (2012)

  33. L.M. Howes et al., Nature 527, 484 (2015)

    ADS  Google Scholar 

  34. W. Hu, N. Sugiyama, ApJ 444, 489 (1995)

    ADS  Google Scholar 

  35. D. Jeong, E. Komatsu, ApJ 651, 619 (2006)

    ADS  Google Scholar 

  36. J.L. Johnson, T.H. Greif, V. Bromm, ApJ 665, 85 (2007)

    ADS  Google Scholar 

  37. J.L. Johnson et al., MNRAS 428, 1857 (2013)

    ADS  Google Scholar 

  38. A.P. Jones, A.G.G.M. Tielens, D.J. Hollenbach, C.F. McKee, ApJ 433, 797 (1994)

    ADS  Google Scholar 

  39. A.P. Jones, A.G.G.M. Tielens, D.J. Hollenbach, ApJ 469, 740 (1996)

    ADS  Google Scholar 

  40. M. Kamionkowski, A. Kosowsky, A. Stebbins, PRD 55, 7368 (1997)

    ADS  Google Scholar 

  41. M. Kaplinghat et al., PRD 61, 103507 (2000)

    ADS  Google Scholar 

  42. C.-G. Kim, S.K. Choi, R. Flauger, ApJ 880, 106 (2019)

    ADS  Google Scholar 

  43. A.G. Kritsuk, R. Flauger, S.D. Ustyugov, PRL 121, 021104 (2018)

    ADS  Google Scholar 

  44. P.P. Kronberg, Rep. Prog. Phys. 57, 325 (1994)

    ADS  Google Scholar 

  45. A. Lazarian, Astrophys. Space Sci. 216, 235 (1994)

    ADS  Google Scholar 

  46. A. Lazarian, T. Hoang, MNRAS 378, 910 (2007)

    ADS  Google Scholar 

  47. A. Lewis, JCAP, 2013, Article ID 53 (2013)

  48. A. Lewis, A. Challinor, Phys. Rep. 429, 1 (2006)

    ADS  Google Scholar 

  49. A.R. Liddle, Phys. Rev. D 49, 739 (1994)

    ADS  Google Scholar 

  50. J. Liu, F. Melia, Proc. R. Soc. A (2020, in press) (arXiv:2006.02510)

  51. M. López-Corredoira, ApJ 781, 96 (2014)

    ADS  Google Scholar 

  52. C.-P. Ma, E. Bertschinger, ApJ 455, 7 (1995)

    ADS  Google Scholar 

  53. J.C. Mather, E.S. Cheng, R.E. Eplee Jr., R.B. Isaacman, S.S. Meyer, R.A. Shafer, R. Weiss, E.L. Wright et al., ApJL 354, L37 (1990)

    ADS  Google Scholar 

  54. T. Matsubara, PRD 77, 063530 (2008)

    ADS  Google Scholar 

  55. A. Meiksin, M. White, J.A. Peacock, MNRAS 304, 851 (1999)

    ADS  Google Scholar 

  56. F. Melia, MNRAS 382, 1917 (2007)

    ADS  Google Scholar 

  57. F. Melia, ApJ 764, 72 (2013a)

    ADS  Google Scholar 

  58. F. Melia, A&A 553, A76 (2013)

    ADS  Google Scholar 

  59. F. Melia, AJ 147, 120 (2014)

    ADS  Google Scholar 

  60. F. Melia, JCAP 01, 027 (2014)

    ADS  Google Scholar 

  61. F. Melia, Front. Phys. 11, 119801 (2016)

    ADS  Google Scholar 

  62. F. Melia, MNRAS 464, 1966 (2017)

    ADS  Google Scholar 

  63. F. Melia, Front. Phys. 12, 129802 (2017)

    ADS  Google Scholar 

  64. F. Melia, EPJ-C Lett. 79, 455 (2019)

    ADS  Google Scholar 

  65. F. Melia, M. Abdelqader, IJMP-D 18, 1889 (2009)

    ADS  Google Scholar 

  66. F. Melia, M. Fatuzzo, MNRAS 456, 3422 (2016)

    ADS  Google Scholar 

  67. F. Melia, M. López-Corredoira, IJMP-D 26, 1750055 (2017)

    ADS  Google Scholar 

  68. F. Melia, M. López-Corredoira, A&A 610, A87 (2018)

    ADS  Google Scholar 

  69. F. Melia, R.S. Maier, MNRAS 432, 2669 (2013)

    ADS  Google Scholar 

  70. F. Melia, A. Shevchuk, MNRAS 419, 2579 (2012)

    ADS  Google Scholar 

  71. S. Naoz, R. Barkana, MNRAS 377, 667 (2006)

    ADS  Google Scholar 

  72. T. Nishimichi, H. Ohmuro, M. Nakamichi et al., PASJ 59, 1049 (2007)

    ADS  Google Scholar 

  73. N. Padmanabhan, M. White, PRD 80, 063508 (2009)

    ADS  Google Scholar 

  74. N. Padmanabhan et al., MNRAS 427, 2132 (2012)

    ADS  Google Scholar 

  75. L. Page et al., ApJS 148, 233 (2003)

    ADS  Google Scholar 

  76. P.J.E. Peebles, J.T. Yu, ApJ 162, 815 (1970)

    ADS  Google Scholar 

  77. W.J. Percival et al., MNRAS 401, 2148 (2010)

    ADS  Google Scholar 

  78. Planck Collaboration, A&A 536, A18 (2011)

    ADS  Google Scholar 

  79. Planck Collaboration, A&A 571, A16 (2014)

    ADS  Google Scholar 

  80. Planck Collaboration, A&A 594, A11 (2016)

    ADS  Google Scholar 

  81. Planck Collaboration, A&A 594, A15 (2016)

    ADS  Google Scholar 

  82. Planck Collaboration A&A, (2018, in press) arXiv:1906.02552

  83. E. Ramirez, D.J. Schwarz, PRD 85, 103516 (2012)

    ADS  Google Scholar 

  84. N.C. Rana, MNRAS 197, 1125 (1981)

    ADS  Google Scholar 

  85. M.J. Rees, Nature 275, 35 (1978)

    ADS  Google Scholar 

  86. G.N. Remmen, S.M. Carroll, PRD 90, 063517 (2014)

    ADS  Google Scholar 

  87. W.G. Roberge, S. Hanany, D.W. Messinger, ApJ 453, 238 (1995)

    ADS  Google Scholar 

  88. P.M. Routly, L. Spitzer, ApJ 115, 227 (1952)

    ADS  Google Scholar 

  89. M. Rowan-Robinson, J. Negroponte, J. Silk, Nature 281, 635 (1979)

    ADS  Google Scholar 

  90. J.A. Rubino-Martin, J. Chluba, R.A. Sunyaev, MNRAS 371, 1939 (2006)

    ADS  Google Scholar 

  91. J.A. Rubino-Martin, J. Chluba, R.A. Sunyaev, A&A 485, 377 (2008)

    ADS  Google Scholar 

  92. R.K. Sachs, A.M. Wolfe, ApJ 147, 73 (1967)

    ADS  Google Scholar 

  93. V. Sahni, A. Shafieloo, A.A. Starobinsky, ApJ 793, L40 (2014)

    ADS  Google Scholar 

  94. S. Santos da Costa, M. Benetti, J. Alcaniz, JCAP, 2018, 004 (2018)

  95. A. Scacco, A. Albrecht, PRD 92, 083506 (2015)

    ADS  Google Scholar 

  96. C.G. Seab, J.M. Shull, ApJ 275, 652 (1983)

    ADS  Google Scholar 

  97. U. Seljak, M. Zaldarriaga, ApJ 469, 437 (1996)

    ADS  Google Scholar 

  98. H.-J. Seo, D.J. Eisenstein, ApJ 633, 575 (2005)

    ADS  Google Scholar 

  99. H.-J. Seo et al., ApJ 720, 1650 (2010)

    ADS  Google Scholar 

  100. G. Sethi et al., PLB 624, 135 (2005)

    Google Scholar 

  101. S. Singh, C.-P. Ma, ApJ 569, 1 (2002)

    ADS  Google Scholar 

  102. D.N. Spergel, ApJ 664, 675 (2007)

    ADS  Google Scholar 

  103. D.N. Spergel, L. Verde, H.V. Peiris, E. Komatsu, M.R. Nolta, C.L. Bennett, M. Halpern, G. Hinshaw et al., ApJS 148, 175 (2003)

    ADS  Google Scholar 

  104. F. Takahara, S. Sasaki, Prog. Theor. Phys. 86, 1021 (1991)

    ADS  Google Scholar 

  105. A. Taruya, T. Nishimichi, S. Saito, T. Hiramatsu, PRD 80, 123503 (2009)

    ADS  Google Scholar 

  106. J.-J. Wei, X. Wu, F. Melia, ApJ 772, 43 (2013)

    ADS  Google Scholar 

  107. J.-J. Wei, X.-F. Wu, F. Melia, R.S. Maier, AJ 149, 102 (2015)

    ADS  Google Scholar 

  108. J.C. Weingartner, B.T. Draine, ApJ 548, 296 (2001)

    ADS  Google Scholar 

  109. J.C. Weingartner, B.T. Draine, ApJ 589, 289 (2003)

    ADS  Google Scholar 

  110. D.E. Welty, E.B. Jenkins, J.C. Raymond, C. Mallouris, ApJ 579, 304 (2002)

    ADS  Google Scholar 

  111. D. Whalen, B. van Veelen, B.W. O’Shea, M.L. Norman, ApJ 682, 49 (2008)

    ADS  Google Scholar 

  112. M. White, S. Silk, ARAA 32, 319 (1994)

    ADS  Google Scholar 

  113. E.L. Wright, ApJ 255, 401 (1982)

    ADS  Google Scholar 

  114. K. Yamamoto, N. Sugiyama, H. Sato, ApJ 501, 442 (2001)

    ADS  Google Scholar 

  115. M.K. Yennapureddy, F. Melia, PDU 20, 65 (2018)

    ADS  Google Scholar 

  116. N. Yoshida, N. Sugiyama, L. Hernquist, MNRAS 344, 481 (2003)

    ADS  Google Scholar 

  117. Q.-J. Yu, D.N. Spergel, J.P. Ostriker, ApJ 558, 23 (2001)

    ADS  Google Scholar 

  118. M. Zaldarriaga, PRD 64, 103001 (2001)

    ADS  Google Scholar 

  119. M. Zaldarriaga, U. Seljak, PRD 55, 1830 (1997)

    ADS  Google Scholar 

Download references

Acknowledgements

I am grateful to the anonymous referee for several helpful suggestions to improve the presentation in the manuscript. I am also very happy to acknowledge helpful discussions with Daniel Eisenstein and Anthony Challinor regarding the acoustic scale, and with Martin Rees, José Alberto Rubino-Martin, Ned Wright and Craig Hogan for insights concerning the last-scattering surface. I thank Amherst College for its support through a John Woodruff Simpson Lectureship and Purple Mountain Observatory in Nanjing, China, for its hospitality while part of this work was being carried out. This work was partially supported by Grant 2012T1J0011 from the Chinese Academy of Sciences Visiting Professorships for Senior International Scientists, and Grant GDJ20120491013 from the Chinese State Administration of Foreign Experts Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Melia.

Additional information

F. Melia: John Woodruff Simpson Fellow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melia, F. Reassessing dust’s role in forming the CMB. Eur. Phys. J. Plus 135, 511 (2020). https://doi.org/10.1140/epjp/s13360-020-00533-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00533-2

Navigation